June 2006 6684 Statistics S2 Mark Scheme

Questio Number	Scheme	Marks	
1. (8	Saves time / cheaper / easier any one or <u>A census/asking all members</u> takes a long time or is expensive or difficult to carry out	B1 (1	1)
(t	 <u>List, register or database</u> of <u>all</u> club <u>members/golfers</u> or <u>Full membership list</u> 	B1 (1	1)
(0	Club <u>member(s)</u>	B1 (1	1)
		Total 3 mark	٢S
2. (a	P(L < -2.6) = $1.4 \times \frac{1}{8} = \frac{7}{40}$ or 0.175 or equivalent	B1 (1	1)
(t	P (L <-3.0 or L > 3.0) = $2 \times \left(1 \times \frac{1}{8}\right) = \frac{1}{4}$ M1 for 1/8 seen	M1;A1 (2	2)
(0	4	B1	
	Using B(20,p) Let X represent number of rods within 3mm	M1	
	$P(X \le 9/p = 0.25)$ or $1 - P(X \le 10/p = 0.75)$	M1	
	= 0.9861 awrt 0.9861	A1 (4) Total 7 mark	/

Question Number	Scheme	Marks
3. (a)	Let <i>X</i> represent the number of properties sold in a week	
	$\therefore X \sim P_{o}(7) $ must be in part a	B1
	Sales occur independently/randomly, singly, at a constant rate context needed once	B1 B1 (3)
(b)	P (X = 5) = P(X \le 5) - P(X \le 4) or $\frac{7^5 e^{-7}}{5!}$	M1
	= 0.3007 - 0.1730 = 0.1277 awrt 0.128	A1 (2)
(c)	$P(X > 181) \approx P(Y \ge 181.5)$ where $Y \sim N(168, 168)$ N(168, 168)	B1
	$= P\left(z \ge \frac{181.5 - 168}{\sqrt{168}}\right) \qquad \qquad \begin{array}{c} \pm 0.5 \\ \text{stand with } \mu \text{ and } \sigma\end{array}$	M1 M1
	Give A1 for 1.04 or correct expression = P ($z \ge 1.04$)	A1
	= 1 - 0.8508 attempt correct area 1-p where $p > 0.5$	M1
	= 0.1492 awrt 0.149	A1 (6)
		Total 11 marks

Question Number	Scheme	Marks	
4. (a)	Let <i>X</i> represent the number of breakdowns in a week.		
	$X \sim P_{o} (1.25)$ implied	B1	
	P ($X < 3$) = P (0) + P(1) + P(2) or P ($X \le 2$)	M1	
	$= e^{-1.25} \left(1 + 1.25 + \frac{(1.25)^2}{2!} \right)$ = 0.868467 awrt 0.868 or 0.8685	A1 A1 (4)	
(b)	H ₀ : $\lambda = 1.25$; H ₁ : $\lambda \neq 1.25$ (or H ₀ : $\lambda = 5$; H ₁ : $\lambda \neq 5$) λ or μ	B1 B1	
	Let <i>Y</i> represent the number of breakdowns in 4 weeks		
	Under H ₀ , $Y \sim P_0(5)$ may be implied	B1	
	$P(Y \ge 11) = 1 - P(Y \le 10)$ or $P(X \ge 11) = 0.0137$	M1	
	One needed for M $P(X \ge 10) = 0.0318$		
	$= 0.0137$ CR $X \ge 11$	A1	
	$0.0137 < 0.025, 0.0274 < 0.05, 0.9863 > 0.975, 0.9726 > 0.95$ or $11 \ge 11$ any .allow %	M1	
	$\sqrt{\text{ from H}_1}$ Evidence that the rate of breakdowns has changed /decreased context	B1√ (7)	
	From their p		

Question Number	Schomo		Marks	
5. (a)	Binomial	B1	(1)	
	Let <i>X</i> represent the number of green mugs in a sample			
(b)	X ~B (10, 0.06) may be implied or seen in part a	B1		
	P (X = 3) = ${}^{10}C_3(0.06)^3(0.94)^7$ ${}^{10}C_3(p)^3(1-p)^7$	M1		
	= 0.016808 awrt 0.0168	A1	(3)	
(c) (i)	Let <i>X</i> represent number of green mugs in a sample of size 125			
	$X \sim P_0(125 \times 0.06 = 7.5)$ may be implied	B1		
	$P(10 \le X \le 13) = P(X \le 13) - P(X \le 9)$	M1		
	= 0.9784 - 0.7764			
	= 0.2020 awrt 0.202	A1	(3)	
(ii)	$P(10 \le X \le 13) \approx P(9.5 \le Y \le 13.5)$ where $Y \sqcup N(7.5, 7.05)$ 7.05	B1		
	$= P\left(\frac{9.5 - 7.5}{\sqrt{7.05}} \le z \le \frac{13.5 - 7.5}{\sqrt{7.05}}\right) $ 9.5, 13.5 ± 0.5 stand.	B1 M1		
	$- \Gamma\left(\frac{1}{\sqrt{7.05}} \le 2 \le \frac{1}{\sqrt{7.05}}\right)$ stand. both values or both correct expressions.	M1		
	$= P(0.75 \le z \le 2.26) $ awrt 0.75 and 2.26	A1		
	= 0.2147 awrt 0.214or 0.215	A1 Tot	(6) al 13 marks	

Question Number	Scheme		Marks
6 (a)	$\int_{1}^{4} \frac{1+x}{k} dx = 1$ $\therefore \left[\frac{x}{k} + \frac{x^{2}}{2k} \right]_{1}^{4} = 1$	$\int f(x) = 1$ Area = 1	M1
	$\therefore \left[\frac{x}{k} + \frac{x^2}{2k}\right]_1^4 = 1$	correct integral/correct expression	A1
	$k = \frac{21}{2} *$ $P(X \le x_0) = \int_{1}^{x_0} \frac{2}{21} (1+x)$	CSO	A1 (3)
(b)	$P(X \le x_0) = \int_1^{x_0} \frac{2}{21} (1+x)$	$\int f(x)$ variable limit or +C	M1
	$= \left[\frac{2x}{21} + \frac{x^2}{21}\right]_1^{x_0}$	correct integral + limit of 1 May have <i>k</i> in	A1
	$= \frac{2x_0 + x_0^2 - 3}{21} \text{ or } \frac{(3+x)(x-1)}{21}$		A1
	$F(x) = \begin{cases} 0, & x < 1 \\ \frac{x^2 + 2x - 3}{21} & 1 \le x < 4 \\ 1 & x \ge 4 \end{cases}$	middle; ends	B1√; B1 (5)
(c)	$E(X) = \int_{1}^{4} \frac{2x}{21} (1+x) dx$	valid attempt $\int x f(x)$	M1
	$\begin{bmatrix} r^2 & 2r^3 \end{bmatrix}^4$	x^2 and x^3	
	$= \left[\frac{x^2}{21} + \frac{2x^3}{63}\right]_{1}^{4}$	correct integration	A1
	$=\frac{171}{63}=2\frac{5}{7}=\frac{19}{7}=2.7142$	awrt 2.71	A1 (3)

Question Number	Scheme	Ma	ırks
(d)	$F(m) = 0.5 \implies \frac{x^2 + 2x - 3}{21} = \frac{1}{2}$ putting their $F(x) = 0.5$	M1	
	$\therefore 2x^2 + 4x \cdot 27 = 0 \text{or equiv}$ $\therefore x = \frac{-4 \pm \sqrt{16 - 4 \cdot 2(-27)}}{4} \qquad \text{attempt their 3 term quadratic}$	M1	
	$\therefore x = -1 \pm 3.8078$ i.e. $x = 2.8078$ awrt 2.81	A1	(2)
	1.e. $x = 2.8078$ awrt 2.81	AI	(3)
(e)	Mode = 4	B1	(1)
(f)	$\frac{\text{Mean} < \text{median} < \text{mode}}{\text{Or}} (\Rightarrow \text{negative skew}) \qquad \text{allow numbers} \\ \text{in place of words} \\ \frac{\text{Mean} < \text{median}}{\text{Mean}}$	B1	(1)
	w diagram but line must not cross y axis		
		Total 1	6 marks

Question Number	Scheme		Marks	6
7. (a)	Let <i>X</i> represent the number of bowls with minor defects.			
	$\therefore X \sim B;(25, 0.20)$ may be implie	ed	B1; B1	
	P $(X \le 1) = 0.0274$ or P(X=0)=0.0038 need to see at least or prob for X \le no For 1		M1A1	
	P (X ≤ 9) = 0.9827; ⇒ P(X ≥ 10) = 0.0173 either		A1	
	$\therefore \operatorname{CR} \text{ is } \{X \le 1 \cup X \ge 10\}$		A1	(6)
b)	Significance level = $0.0274 + 0.0173$			
	= 0.0447 or $4.477%$ awrt 0.04	447	B1	(1)
c)	$H_0: p = 0.20; H_1: p < 0.20;$		B1 B1	
	Let Y represent number of bowls with minor defects			
	Under $H_0 Y \sim B$ (20, 0.20) may be impl	lied	B1	
	P ($Y \le 2$) or P($Y \le 2$) = 0.2061 either P($Y \le 1$) = 0.0692	r	M1	
	$= 0.2061 CR Y \le 1$		A1	
	0.2061 > 0.10 or $0.7939 < 0.9$ or $2 > 1$ their	p	M1	
	Insufficient evidence to suggest that the proportion of defective bowls has decreased.		В1√	(7)