

Mark Scheme (Results)

Summer 2016

Pearson Edexcel GCE Decision Mathematics 2

6690/01

PEARSON

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2016 Publications Code 6690_01_1606_MS All the material in this publication is copyright © Pearson Education Ltd 2016

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: method marks are awarded for `knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- ☐ The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.

- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Question Number	Scheme	Mark	.S
1. (a)	e.g. in the practical problem each vertex must be visited at least once. In the classical problem each vertex must be visited just once	B2, 1, 0	(2)
	A - D - C - F - B - E - G - A 12+16+19+25+14+41+22 = 149	M1	
(b)	A - D - C - F - G - E - B - A	A1	
	12 + 16 + 19 + 25 + 41 + 14 + 31 = 158	A1	(3)
(c)	RMST weight = 86 (miles)	B1	
	86 + 12 + 15 = 113 (miles)	M1 A1	(3)
(J)	112 < optimal distance < 140	B2, 1, 0	(2)
(d)	$113 \leq \text{optimal distance} \leq 149$	10 marks	S

Notes for Question 1

a1B1: Understands the difference is connected to the number of times each vertex may be visited (but maybe incorrectly attributed). Must be an attempt at a difference (so must refer to both the classical and practical problems explicitly). Technical language (vertex/node) must be correct. Need not imply each/every/all (oe) vertices for this first mark

a2B1: Correctly identifies which is classical and which is practical and correctly states the difference. Must imply that each/every/all (oe) vertices are visited, so for example, 'the practical problem visits a vertex at least once while the classical visits a vertex only once' is B1B0 (note that B0B1 is not possible in (a))

b1M1: Either one correct route, must return to A, or one correct length stated (do not isw in part (b) if correct lengths seen but are then doubled)

b1A1: One correct route, must return to A and corresponding length correct

b2A1: Both routes correct and their corresponding lengths correct

c1B1: CAO for RMST weight (either 86 or 20 + 16 + 14 + 19 + 17) – maybe implied by later working c1M1: Adding 12 + 15 (the two least weighted arcs) to their RMST length (the length of their RMST must be in the interval $66 \le RMST \le 106$) – this mark maybe implied by the correct value for the lower bound c1A1: CAO - if 113 seen without working then award all 3 marks in (c)

d1B1: Their numbers correctly used, accept any inequalities or any indication of interval from their 113 to their 149 (so 113 - 149 can score this mark). This mark is dependent on two totals seen in (b), however, neither of the two totals need to be correct. Please note that UB > LB for this mark d2B1. CAO (no follow through on their usloss) including correct inequalities on equivalent or patients of the two totals need to be correct.

d2B1: CAO (no follow through on their values) including correct inequalities or equivalent set notation (but condone 113 <optimal distance ≤ 149)

2. (a) Sat	terreted errors CD_CC_AE_DT_ET		
	turated arcs: SB, SC, AE, DT, FT	M1 A1	(2)
(b) 59		B1	(1)
(c) C_1	$=72, C_2 = 86$	B1 B1	(2)
(d) SA	ABCFET	B1	(1)
(e) The	e cut through DT, AE and CF (or DT, AE, BC and SC) has a value 62	M1	
Val	lue of the flow is 62, so by max flow – min cut theorem, flow is maximal	A1	(2)
		8 marks	
	Notes for Question 2		

a1M1: All correct – accept one omission **and/or** one extra arc a1A1: CAO

b1B1: CAO (59)

c1B1: CAO (72) c2B1: CAO (86)

d1B1: CAO (accept, SA, AB, BC, CF, FE, ET)

e1M1: The arcs of the correct cut stated **or** a correct cut drawn on their diagram in the answer book – please check carefully for this

e1A1: Must have stated the (maximum) flow as 62 and a conclusion based on the max flow min cut theorem - they must use all four words, 'max', 'flow', 'min', 'cut' in their conclusion

3. (a) Since maximising, subtract all elements from some value ≥ 72 e.g II 122 25 49 1 10 52 11 23 24 23 0 4 5 5 III 10 52 11 2 23 24 23 0 5 46 5 0 2 12 22 11 31 and then columns $\begin{bmatrix} 0 & 7 & 9 & 33\\ 0 & 5 & 46 & 5\\ 0 & 17 & 17 & 16\\ 0 & 0 & 0 & 0 \end{bmatrix}$ MI A1 Image: the state of the st	Question Number	Scheme	Marks	
$\begin{bmatrix} 11 & 22 & 25 & 49 \\ 1 & 10 & 52 & 11 \\ 2 & 23 & 24 & 23 \\ 0 & 4 & 5 & 5 \end{bmatrix}$ $M1$ $Reduce rows \begin{bmatrix} 0 & 11 & 14 & 38 \\ 0 & 9 & 51 & 10 \\ 0 & 21 & 22 & 21 \\ 0 & 4 & 5 & 5 \end{bmatrix}$ and then columns $\begin{bmatrix} 0 & 7 & 9 & 33 \\ 0 & 5 & 46 & 5 \\ 0 & 17 & 17 & 16 \\ 0 & 0 & 0 & 0 \end{bmatrix}$ $M1 A1$ $\begin{bmatrix} 0 & 2 & 4 & 28 \\ 0 & 0 & 41 & 0 \\ 0 & 12 & 12 & 11 \\ 5 & 0 & 0 & 0 \end{bmatrix}$ followed by $\begin{bmatrix} 0 & 0 & 2 & 26 \\ 2 & 0 & 41 & 0 \\ 0 & 10 & 10 & 9 \\ 7 & 0 & 0 & 0 \end{bmatrix}$ $M1 A1$ $\begin{bmatrix} 0 & 0 & 12 & 12 & 11 \\ 5 & 0 & 0 & 0 \end{bmatrix}$ followed by $\begin{bmatrix} 0 & 0 & 2 & 26 \\ 2 & 0 & 41 & 0 \\ 0 & 10 & 10 & 9 \\ 7 & 0 & 0 & 0 \end{bmatrix}$ $M1 A1$ $M1 A1$ $\begin{bmatrix} 0 & 0 & 12 & 12 & 11 \\ 5 & 0 & 0 & 0 \end{bmatrix}$ followed by $\begin{bmatrix} 0 & 0 & 2 & 26 \\ 2 & 0 & 41 & 0 \\ 0 & 10 & 10 & 9 \\ 7 & 0 & 0 & 0 \end{bmatrix}$ $M1 A1$ $M1 A1$ $\begin{bmatrix} 0 & 0 & 12 & 12 & 11 \\ 5 & 0 & 0 & 0 \end{bmatrix}$ $M1 A1$ $\begin{bmatrix} 0 & 0 & 12 & 12 & 11 \\ 5 & 0 & 0 & 0 \end{bmatrix}$ $M1 A1$ $\begin{bmatrix} 0 & 0 & 12 & 12 & 11 \\ 5 & 0 & 0 & 0 \end{bmatrix}$ $M1 A1$ $M1 $	3. (a)	Since maximising, subtract all elements from some value ≥ 72		
$\begin{array}{ c c c c c c } \hline Reduce rows & \begin{bmatrix} 0 & 9 & 51 & 10 \\ 0 & 21 & 22 & 21 \\ 0 & 4 & 5 & 5 \end{bmatrix} \text{ and then columns} & \begin{bmatrix} 0 & 5 & 46 & 5 \\ 0 & 17 & 17 & 16 \\ 0 & 0 & 0 & 0 \end{bmatrix} & \qquad \qquad$		[11 22 25 49]	M1	
$ \begin{array}{ c c c c c c c } \hline 0 & 0 & 41 & 0 \\ 0 & 12 & 12 & 11 \\ 5 & 0 & 0 & 0 \end{array} \end{array} followed by \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Reduce rows $ 0 9 51 10 \\ 0 21 22 21 $ and then columns $ 0 5 46 5 \\ 0 17 17 16 $	M1 A1	
LA1A1(B)Optimal allocation is F = 1, A = 2, Z = 3, E = 4A1(8)(Total score is =) 248B1(1)Notes for Question 3a1M1: Subtracting from some value which must be \geq 72 or all values made negative and then adding a value which must be \geq 72. Condone no more than two errorsa2M1: Reducing rows and then columns – candidates may combine the two stages of converting from a maximum to a minimum problem and row reduction which is acceptablea1A1: CAOa3M1: Double covered +e; one uncovered –e; and one single covered unchanged. 2 lines to 3 lines needed to 4a1M1: Subtracting from some value which must be \geq 72 or all values made negative and then adding a value which must be \geq 72. Condone no more than two errorsa2M1: Reducing rows and then columns – candidates may combine the two stages of converting from a maximum to a minimum problem and row reduction which is acceptablea1A1: CAOa3M1: Double covered +e; one uncovered –e; and one single covered unchanged. 2 lines to 3 lines needed to 4a3A1: CAOa3A1: CAOa3A1: CAOa4A1: CAOa3A1: CAOa4A1: CAOa3A1: CAO52. conduct the optimal tablea3A1: CAO52. conduct the optimal tablea3A1: CAO52. conduct the optimal table <td colsp<="" td=""><td></td><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td><td></td></td>	<td></td> <td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td> <td></td>		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
B1(1) 9 marksNotes for Question 3alM1: Subtracting from some value which must be ≥ 72 or all values made negative and then adding a value which must be ≥ 72 . Condone no more than two errors a2M1: Reducing rows and then columns – candidates may combine the two stages of converting from a 			A1 (8)	
Notes for Question 3a1M1: Subtracting from some value which must be \geq 72 or all values made negative and then adding a value which must be \geq 72. Condone no more than two errors a2M1: Reducing rows and then columns – candidates may combine the two stages of converting from a maximum to a minimum problem and row reduction which is acceptable a1A1: CAO a3M1: Double covered +e; one uncovered –e; and one single covered unchanged. 2 lines to 3 lines needed a2A1ft: Follow through on their previous table – no errors a4M1: One double covered +e; one uncovered –e; and one single covered unchanged. 3 lines needed to 4 lines needed (so getting to the optimal table) a3A1: CSO on final table (so must have scored all previous marks) a4A1: CAO – this mark is dependent on all M marks being awarded33 26 24 40 46 41 41 41 42 5 1 034 12 2 1 0 133 26 24 40 24 46 41 41 41 47 0 0 0 033 26 24 40 46 41 41 41 41 42 0 46 41 0 41 0 0 033 26 24 40 24 46 41 41 41 43 46 41 41 41 43 46 41 41 41 43 46 441 441 47 46 441 441 47 46 441 441 47 46 441 441 47 46 441 46 441 47 46 441 46 441 47 46 441 47 46 441 46 441 47 46 441 46 441 47 46 441 47 46 441 46	(b)	-	B1 (1)	
After row reduction $ \begin{bmatrix} 38 & 27 & 24 & 0 \\ 51 & 42 & 0 & 41 \\ 22 & 1 & 0 & 1 \\ 5 & 1 & 0 & 0 \end{bmatrix} $ and then after column reduction $ \begin{bmatrix} 33 & 26 & 24 & 0 \\ 46 & 41 & 0 & 41 \\ 17 & 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} $	value whic a2M1: Rec maximum a1A1: CA0 a3M1: Dou a2A1ft: Fo a4M1: One lines neede a3A1: CS0 a4A1: CA0 b1B1: CA0	h must be \geq 72. Condone no more than two errors hucing rows and then columns – candidates may combine the two stages of conv to a minimum problem and row reduction which is acceptable O uble covered +e; one uncovered –e; and one single covered unchanged. 2 lines to llow through on their previous table – no errors e double covered +e; one uncovered –e; and one single covered unchanged. 3 line ed (so getting to the optimal table) O on final table (so must have scored all previous marks) O – this mark is dependent on all M marks being awarded	perting from a	
			$\begin{bmatrix} 0 \\ 41 \\ 1 \\ 0 \end{bmatrix}$	
			L	

Number						Sche	eme					Mai	ks
4. (a)	e.g.var	iable 2	c was in	creas	ed first,	since it	t has b	ecome a	basic varia	able		B1	(1)
								T T 1					
	b.v.	$\frac{x}{0}$	$\frac{y}{2.5}$	$\frac{z}{1}$	<i>r</i> 0.5	<i>s</i> -1.5	t 0	Value 5	row op $P \cdot 2$			M1 A	l
		1	-5.5	1 0	-1.5	5.5	0	3	$R_1 \div 2$				
(b)	$\begin{array}{c} x \\ t \end{array}$	1 0	-3.5	0	-1.5	2.5	0	3 8	$R_2 - 3R$			M1	
	$\frac{l}{P}$	0	13	0	2	-5	0	27	$\frac{R_3 + R_1}{R_4 + 4R_1}$			A1ft A	
					I			I		1			(5)
(c)	<i>P</i> +13	y+2r	-5s = 2	27								B1ft	(1)
(d)	P = 27 optima		-2r+3	5 <i>s</i> , so	we can	increas	se the	profit by	increasing	g s, hei	nce not	B2,1,0 9 mark	(2) s
	optima	.1			N	lotes fo	r Oue	stion 4					
a1B1: e.g.	. identifi	es x, r	efers to	basic									
b1A1: Piv b2M1: Al	vot row c l values	orrect	includ of the	ing cl non-p	h ange o ivot rov	of b.v. (s ws corre	so the ect or	<i>r</i> must be one of the	e replaced e non zero-			umns (<i>y, r, s</i>	or
b1A1: Piv b2M1: Al value) cor b2A1ft: R value) cor b3A1: CA given in te	vot row c l values rect folle cow oper rect folle AO - no f erms of o	correct in one owing ations owing follow old row t on th	includ of the throug used co throug throug w 1 - ig ne secon	ing cl non-p h their orrect h their h – al pnore	hange o ivot rov r choice ly at lea r choice l values b.v. col	of b.v. (ws corre e of pive ast twice e of pive s and ro lumn fo	so the ect or ot from e, i.e. t ot from w oper or this	r must be one of the n column two of the n column rations co mark	e replaced e non zero- z e non zero- z orrectly sta	-and-o -and-o ated – a	ne colu one colu allow it	umns (y, <i>r, s</i> umns (y, <i>r, s</i> f row operat <i>P</i> (please no	or ions
b2M1: AI value) cor b2A1ft: R value) cor b3A1: CA given in to c1B1ft: D P = 13y + d1B1: Mu 'negatives d2B1: CA that could	yot row c l values rect follow oper rect follow AO - nother erms of c ependen $2r - 5s - 1ist have gis in profitAO - depbe increased$	correct in one owing ations owing follow old row t on th +27 is gained t row' enden eased a	includ of the throug used co throug throug $v \ 1 - ig$ he secon s incorr l both N with n t on the and stat	ing cl non-p h their orrect h their h – al (nore and M r ect) A mari o furth corre es 'no	hange of ivot row r choice ly at lea r choice l values b.v. col mark ea ks in (b her expl ect profi of optim	of b.v. (ws corrections corrections trained ast twice of pive and row and row	so the ect or for from e, i.e. to from w ope: or this (b) - hust re- a given on in	r must be one of the n column two of the n column rations co mark must be a fer to inc n (c). Speci	e replaced e non zero- z e non zero- z orrectly sta an equation ereasing y, ifically ide	-and-o -and-o ated – a n conta , <i>r</i> or <i>s</i> entifies	ne colu one colu allow in aining <i>l</i> . Do no s <i>s</i> as th	umns (y, <i>r, s</i> f row operat P (please no	or ions te tha
b1A1: Piv b2M1: Al value) cor b2A1ft: R value) cor b3A1: CA given in ta c1B1ft: D P = 13y + d1B1: Mu 'negatives d2B1: CA that could	yot row c l values rect follow oper rect follow $\Delta O - nother erms of c ependen 2r - 5s - 1ist have gist in profit\Delta O - depbe increased$	correct in one owing ations owing follow old row t on th +27 is gained t row' enden eased a	includ of the throug used co throug throug $v \ 1 - ig$ he secon s incorr l both N with n t on the and stat	ing cl non-p h their orrect h their h – al (nore and M r ect) A mari o furth corre es 'no	hange of ivot row r choice ly at lea r choice l values b.v. col mark ea ks in (b her expl ect profi of optim	of b.v. (ws corrections corrections trained ast twice of pive and row and row	so the ect or for from e, i.e. to from w ope: or this (b) - hust re- a given on in	r must be one of the n column two of the n column rations co mark must be a fer to inc n (c). Speci	e replaced e non zero- z e non zero- z orrectly sta an equation ereasing y, ifically ide	-and-o -and-o ated – a n conta , <i>r</i> or <i>s</i> entifies	ne colu one colu allow in aining <i>l</i> . Do no s <i>s</i> as th	umns (y, <i>r, s</i> f row operat <i>P</i> (please no ot accept ne next varia	or ions te tha
b1A1: Piv b2M1: Al value) cor b2A1ft: R value) cor b3A1: CA given in ta c1B1ft: D P = 13y + d1B1: Mu 'negatives d2B1: CA that could	yot row c l values rect follow oper rect follow $\Delta O - nother erms of c ependen 2r - 5s - 1ist have gist in profit\Delta O - depbe increased$	correct in one owing ations owing follow old row t on th + 27 is gained t row' enden eased a in the	includ of the throug used co throug throug w 1 – ig ne secon s incorr both N with n t on the and stat	ing cl non-p h their orrect h their h – al gnore and M r ect) A mar o furth corre es 'no an (car	hange o ivot rov r choice ly at lea r choice l values b.v. col mark ea ks in (b her expl ect profi of optim	of b.v. (ws corrections corrections trained ast twice of pive and row umn for umn for umn for and in anation t equati al' (oe) a maxin	so the ect or from $(b, c, c,$	r must be one of the n column two of the n column rations co mark must be a fer to incon (c). Speci	e replaced e non zero- z e non zero- z orrectly sta an equation ereasing y, ifically ide	-and-o -and-o ated – a n conta , r or s entifies	ne colu one colu allow in aining <i>I</i> . Do no <i>s</i> as th 1 B0B	umns (y, <i>r, s</i> f row operat <i>P</i> (please no ot accept ne next varia	or ions te tha
b1A1: Piv b2M1: Al value) cor b2A1ft: R value) cor b3A1: CA given in ta c1B1ft: D P = 13y + d1B1: Mu 'negatives d2B1: CA that could	yot row c l values rect follow oper rect follow $\Delta O - nother erms of c ependen 2r - 5s - 1ist have gist in profit\Delta O - depbe increased$	correct in one owing ations owing follow old row t on th +27 is gained t row' enden eased a	includ of the throug used co throug throug $v \ 1 - ig$ ne secon s incorr both N with n t on the and stat	ing cl non-p h their orrect h their h – al more and M r ect) A mari- o furth correct s 'no	hange of ivot row r choice ly at lea r choice l values b.v. col mark ea ks in (b her expl ect profi of optim	of b.v. (ws corrections corrections trained ast twice of pive and row and row	so the ect or for from e, i.e. to from w ope: or this (b) - hust re- a given on in	r must be one of the n column two of the n column rations co mark must be a fer to inc n (c). Speci	e replaced e non zero- z e non zero- z orrectly sta an equation ereasing y, ifically ide 0A0M1A1	-and-o -and-o ated – a n conta , r or s entifies A0 B	ne colu one colu allow in aining <i>l</i> . Do no s <i>s</i> as th	umns (y, <i>r, s</i> f row operat <i>P</i> (please no ot accept ne next varia	or ions te tha
b1A1: Piv b2M1: Al value) cor b2A1ft: R value) cor b3A1: CA given in ta c1B1ft: D P = 13y + d1B1: Mu 'negatives d2B1: CA that could	yot row c l values rect follow oper rect follow $\Delta O - nother erms of c ependen 2r - 5s - 1ist have gist in profit\Delta O - depbe increased$	correct in one owing ations owing follow old row t on th +27 is gained t row' enden cased a in the	includ of the throug used co throug throug w 1 – ig ne secon s incorr both N with n t on the and stat z colum	ing cl non-p h their orrect h their h – al gnore and M r ect) A mar o furth correct s 'no an (car $\frac{c}{\sqrt{3}}$	hange of ivot row r choice ly at lea r choice l values b.v. col mark ea ks in (b her expl ect profi of optim n score y 11/3 2/3	of b.v. (is we corrected of pive e of pive and row and row anned in anation it equation al' (oe) a maxim	so the ect or potential from the ect or potential from the external from the extern	r must be one of the n column two of the n column rations commark must be a fer to incommark (c). Specide of B1 Max	e replaced e non zero- z e non zero- z orrectly sta an equation ereasing y, ifically ide 0A0M1A1 t/3 0 3 0	-and-o -and-o ated – a n conta , r or s entifies A0 B	ne colu one colu allow in aining J . Do no s as the 1 B0B lue $\frac{2}{6}$	umns (y, <i>r, s</i> f row operat <i>P</i> (please no ot accept ne next varia	or ions te tha
b1A1: Piv b2M1: Al value) cor b2A1ft: R value) cor b3A1: CA given in ta c1B1ft: D P = 13y + d1B1: Mu 'negatives d2B1: CA that could	yot row c l values rect follow oper rect follow $\Delta O - nother erms of c ependen 2r - 5s - 1ist have gist in profit\Delta O - depbe increased$	correct in one owing ations owing follow old row t on th + 27 is gained t row' enden eased a in the b_x	includ of the throug used co throug throug $v \ 1 - ig$ ne secons incorr both N with n t on the and stat z colum $v \ -2$ 1/2	ing cl non-p h their orrect h their h – al more and M r ect) A maria correct correct s function A maria correct an (car $\frac{c}{3}$ $\frac{7}{3}$	hange of ivot row r choice ly at lea r choice l values b.v. col mark ea ks in (b her expl ect profit of optim n score y 11/3	of b.v. (is we corrected of pive e of pive and row and row and row and in a maximal (oe) a maximal $\frac{z}{0}$	so the ect or potential from the ect or potential from the equation of the eq	r must be one of the on column two of the n column tations comment must be a fer to incomment (c). Specified of B1 Max s -11/	e replaced e non zero- z e non zero- z orrectly sta an equation ereasing y, ifically ide 0A0M1A1 $\frac{t}{3}$	-and-o -and-o ated – a n conta , r or s entifies	ne colu one colu allow in aining J . Do no s as the 1 B0B <u>alue</u>	umns (y, <i>r, s</i> f row operat <i>P</i> (please no ot accept ne next varia	or ions te tha

Question Number	Scheme								Mark	KS .				
5. (a)	(total) supply	> (total) de	emand										B1	(1)
(b)		1 2 3 4 0emand	A 18 22 24 21 40	B 23 17 21 22 20	20 22 19 17 25	0 5 9 7	Dum 0 0 0 0			Supply 15 36 28 20	7		B1	(1)
(c)		1 2 3 4 Demand	A 15 25 40	5	B 11 9 20	C 19 6 25		4		pply 15 36 28 20			B1	(1)
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	17+ <i>θ</i>	25	$\frac{D}{\theta}$ $4-\theta$	givi	ng	1 2 3 4		A 15 16 9 Exiti	B 20 ing cel	C 25 1 is B3	D 3 11	M1 A1	
(d)			adow costs 0 4 3 3	1 2 3 4	18 A X X 3 X	13 B 10 X 5 6) 4 5 7	2 	-3 D 3 -1 X X X				M1 A1	
				Enter	ring c	ell is	C4							
	A 1 2 3 4	B C 25-α θ	θ 3-	$\frac{D}{\theta}$	2	givin	g	1 2 3 4	A 15 16 9 Ex	B 20 iting C	C 14 11 cell is 1	D 14 D4	M1 A1	(6)

Question Number				Sche	eme			Marks
(e)		Shadow costs 0	1	18 A X	13 B 10	14 C 6	-5 D 5	M1 A1
(C)		4 5 3	2 3 4	X 1 X	X 3 6	7 X X	1 X 2	
	Optimal since no	negative im	prove	ement i	indices			A1 (3) 12 marks
101 01	O (or to make dem				r Quest		1 ())	
		una – suppi	, 010			iiu <i>−</i> 30	PPIJ (00))	
01B1: CA	0							
21B1: CA	0							
11A1: Con 12M1: Fir 12A1: Sha 13M1: A 13A1: CS	valid route, only on rrect route, up to ar ading 8 shadow cos adow costs [Alt: A(valid route, their m O (for part d) – so cells stated correct	n improved sts and 9 imp (0), B(-5), C ost negative all previous	solutio proven 2(-2), 1 e II ch	on (sev ment i D(-21) osen, o	ven num ndices), 1(18) only on	nbers no , 2(22), e empty	o zeros) 3(21), 4(21) y square used	
e1A1: CA positive II		costs [Alt: A	(0), E				-	ive II found 3(23), 4(21)] and the 9

Question Number	Ncheme										Marks		
	Row mine $\{-3, 0, -4\}$ Column may $\{5, 5, 4\}$												
6. (a)	(a) Row maximin (0) \neq column minimax (4) (so not stable)												
(b)	E.g. add	5 to ea	ch eleme	ent							B1		
	Let p_1, p_2	p_2, p_3 be	e the pro	bability	of (A) p	laying 1	, 2 and 3	3 respec	tively		B1		
	Let p_1, p_2, p_3 be the probability of (A) playing 1, 2 and 3 respectively (where $p_1, p_2, p_3 \ge 0$)												
	Let V = value of the game (to player A)												
	Maximis	se (P =)	V								B1		
	Subject	to:											
	V-10p		$-p_3 + r =$	= 0									
	$V - 2p_1$										M1 A1 A1		
	$V-6p_1$	$-5p_2^{-1}$	$9p_3 + t =$:0							(7)		
	$p_1 + p_2 - p_2 $	$+ p_3(+u)$)=1										
	(r,s,t,u)	≥ 0)											
	e.g. (add	ling 5 to	each el	ement)									
	b.v.	V	p_1	p_2	p_3	r	S	t	и	Value			
	r	1	-10	-7	-1	1	0	0	0	0	B1 M1 A1		
(c)	S	1	-2	-10	-4	0	1	0	0	0	(3)		
	t	1	-6	-5	-9	0	0	1	0	0			
	и	0	1	1	1	0	0	0	1	1			
	Р	-1	0	0	0	0	0	0	0	0			
											12 marks		

a1M1: Finding row minimums and column maximums – condone one error

a1A1: CAO must state that $0 \neq 4$ (oe) – if $0 \neq 4$ stated with no working then award M1A0 only

b1B1: Making all terms non-negative (any addition ≥ 4 is acceptable)

b2B1: Defining probability variables

b3B1: Defining V

b4B1: 'maximise' + function/expression

b1M1: At least three (of the four) equations **or** inequalities in V, p_1 , p_2 , p_3 (with all p_i terms in the first three constraint equations having correct signs for the coefficients) – condone no slack variables for this mark b1A1: CAO - the three constraints involving V and p_i expressed as equations with slack variables

b2A1: Probability sum **equation** correct (allow presence of a slack variable in this equation)

c1B1: All row and column labels correct for Simplex tableau

c1M1: Any two (numerical in nature) rows correct following from their constraints **or** a 'correct' answer (no follow through) with either one column or one row or one of both (so both a row and column) missing c1A1: CAO – candidates may not label columns or rows in the order as given above – please check these carefully. Furthermore, candidates may add any value ≥ 4 which will change the nine bolded values above (so if +4 has been used this will increase each of the bolded values by +1). If all these bolded values are different then check the candidate's original constraints in (b) to see if consistent with equations seen earlier

Question Number				Se	cheme				Marks	
	Stage	State	Action	Dest		Va	lue			
	May	3	1	0	75 + 1	50	= 225	5*		
	(4)	2	2	0	50 + 1	50	= 200)*		
		1	3	0	25 + 1	50	= 175	5*		
		0	4	0	1	50 + 400	= 550)*		
	April	3	3	0	75 + 1			*		
	(6)		4	1		50 + 400 + 1				
			5	2	75 + 1	50 + 400 + 2			M1 A1 A1	1
		2	4	0		50 + 400 + 5			(April)	
			5	1	50 + 1	50 + 400 + 1	75 = 775	*	_	
		1	5	0	25 + 1	50 + 400 + 5	50 = 112	25*		
	March	3	3	1	75 + 1	50 + 1	125 = 135	50*		
	(5)		4	2	75 + 1	50 + 400 + 7	75 = 140	00		
			5	3	75 + 1	50 + 400 + 7	75 = 140	00	M1 A1ft A	41
		2	4	1	50 + 1	50 + 400 + 1	125 = 172	25	(March)	
			5	2	50 + 1	50 + 400 + 7	75 = 137	'5*		
7 (a)		1	5	1	25 + 1	50 + 400 + 1	125 = 170)0*		
7. (a)	Feb	3	0	1	75		700 = 177			
	(2)		1	2	75 + 1		375 = 160			
	(-)		2	3	75 + 1		350 = 157			
		2	1	1	50 + 1		700 = 190			
			2	2	50 + 1 50 + 1		375 = 157			
			3	3	50 + 1		350 = 155			
		1	2	1	25 + 1		700 = 187		M1 A1ft A	41
		-	3	2	25 + 1 25 + 1		375 = 155		(February))
			4	3		$\frac{50}{50+400+1}$				
		0	3	1	-		700 = 185			
		0	4	2		$\frac{50}{50+400+1}$				
			5	3		$\frac{50+100+1}{50+400+1}$				
	Jan	0	2	0		50 + 100 + 100				
	(2)	0	3	1	-	$\frac{50}{50} + 13$			M1 A1	
	(2)		4	2		$\frac{50}{50+400+1}$			(January)	
			5	3		$\frac{50+100+1}{50+400+1}$			(January)	
	Month		January	y Fel	bruary	March	April	May	B1	
	Number	made	3		3	5	5	3		
	Minimum	cost: (£)) 1700						B1 ((13)
(b)	700×19-	(6050+	their 1700)	$= (\pounds) 555$	50				M1 A1 15 marks	(2)

Number	Notes for Operation 7	
	<u>Notes for Question 7</u> ust bring optimal result from previous stage into calculations so 225, 200, 175 or 550 (the optimal results from May) are used the	0
rows. Condone an 'ingredients' (st example for the si either three or fo	ad credit rows that have been crossed out if they can still be read orage costs, overhead costs, additional worker cost) at least once x rows in April we must see at least one of these rows having a ca ur values). Must have values in two of the three colums (State, A then the number stated in the Value column must be correct to in method has been used	. Must have right per stage (as an alculation that has ction, Dest). If no
above) a1A1: Any two state	April) completed. At least 6 rows, 'something' in each cell (but see Mes correct (condone extra rows) stage. No extra rows	1 mark guidance
a2M1: Second stage above)	(March) completed. At least 6 rows, something in each cell (see M	mark guidance
a3A1ft: Any two sta rows)	tes correct – ft their * values/their smallest value from previous stag	e (condone extra
a3M1: Third stage (above)	February) completed. At least 12 rows, something in each cell (see N	A mark guidance
,	tes correct – ft their * values/their smallest value from previous stag	e (condone extra
,	d stage. No extra rows	
-	completed. At least 4 rows, something in each cell (see M mark guid for fourth stage. No extra rows	lance above)
	ust have scored all previous M marks ne lack of units - but must have scored all previous M marks	
	$(450+19\times200+\text{their 1700})$ or $7250-\text{their 1700}$. Must have score	ed at least two M
	ne lack of units) – correct answer with no working can score both main at least two M marks awarded in (a))	arks in this part (bu

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom