

Mark Scheme (Results)

Summer 2015

Pearson Edexcel GCE in Decision Mathematics 2 (6690/01)

ALWAYS LEARNING

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2015 Publications Code UA041216 All the material in this publication is copyright © Pearson Education Ltd 2015

• All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.

• Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.

• Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.

• There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.

• All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.

• Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.

• Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- ***** The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.

- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

Question Number						Schem	ne			Mar	ks
1.(a)	b.v. r x t P	x 0 1 0 0	$\frac{y}{-5}$ $\frac{1}{2}$ $-\frac{3}{2}$ $\frac{7}{2}$	z 5 2 6	r 1 0 0 0 0 0	$\begin{array}{r} s \\ -\frac{1}{2} \\ \frac{1}{4} \\ -\frac{1}{4} \\ \frac{3}{4} \end{array}$	t 0 0 1 0	Value 5 5 3 15	$\frac{\text{Row ops}}{R_1 - 2R_2}$ $R_2 \div 4$ $R_3 - R_2$ $R_4 + 3R_2$	M1 A1 M1 A1ft A1	(5)
(b)	$P + \frac{7}{2}y$ $r = 5, z$	+z+ s=0,	$\frac{3}{4}s = 3$ $t = 3$	15 3						B1ft B1 7 marks	(2)
	Notes for Question 1										
a1M1: Con a1A1: Pive a2M1: All value) con	Notes for Question 1 a1M1: Correct pivot located (4 in column <i>x</i>), attempt to divide row a1A1: Pivot row correct including change of b.v. a2M1: All values in one of the non-pivot rows correct or one of the non zero and one columns (<i>y</i> , <i>z</i> , <i>s</i> or value) correct following through their choice of pivot from column <i>x</i>										

a2A1ft: Row operations used correctly at least twice, i.e. **two** of the non zero and one columns (y, z, s or value) correct following through their choice of pivot from column x

a3A1: CAO – no follow through – all values and row operations correctly stated – allow if row operations given in terms of old row 2 – **ignore b.v. column for this mark**

b1B1ft: Follow their profit equation from (a) dependent on scoring **both** M marks in (a) b2B1: CAO (no follow through) for slack variables (r = 5, s = 0, t = 3)

Pivoting on the 1 in the *x*-column

b.v.	x	у	Z	r	S	t	V
r	0	-2	-7	1	0	-2	-1
S	0	6	-24	0	1	-4	-12
x	1	-1	4	0	0	1	8
Р	0	-1	19	0	0	3	24

Pivoting on the 2 in the *x*-column

b.v.	x	у	Z.	r	S	t	V
x	1	-2	0.5	0.5	0	0	7.5
S	0	10	-10	-2	1	0	-10
t	0	1	3.5	-0.5	0	1	0.5
Р	0	-4	8.5	1.5	0	0	22.5

Question	Scheme	Marks
Number	Scheme	IVIAIKS
2. (a)	The gains (or losses) made by one player are exactly balanced by the losses (or gains) made by the other player.	B1 (1)
(b)	5	B1 (1)
(c)	Row minimum $\{-3,0,-5\}$ Row maximin = 0	M1
	Column maximum $\{2,4,2\}$ Column minimax = 2	A1
	$0 \neq 2$ so no stable solution	A1 (3)
(d)	Column 1 dominates column 2 so remove column 2	BI
	$\begin{pmatrix} 3 & 0 & 2 \\ -2 & -1 & 5 \end{pmatrix}$	B1ft B1 (3)
(e)	(Let $p = \text{probability that Greg plays new row 1)}$ If R plays 1: G's expected winnings = $3p - 2(1 - p) (= 5p - 2)$ If R plays 2: G's expected winnings = $0p - 1(1 - p) (= p - 1)$ If R plays 3: G's expected winnings = $-2p + 5(1 - p) (= -7p + 5)$	M1 A1 B2, 1ft, 0
	p - 1 = -7p + 5 8p = 6 $p = \frac{3}{4}$ G should play 1 with probability $\frac{3}{4}$, 2 never and play 3 with probability $\frac{1}{4}$ The value of the game to G is $-\frac{1}{4}$	DM1 A1 A1ft A1 (8) 16 marks

Question Number	Scheme	Marks						
1 (0/110 01	Notes for Question 2							
a1B1: CAO (indication that either the losses of one (player) are balanced by the gains of the other (player) or that the total points scored by both (players) is zero)								
b1B1: CA	O (5)							
c1M1: Clear attempt to find the Row maximin and Column minimax (either the Row minimums or Column maximums correct or at least four (of the six) values stated correctly) c1A1: Correct Row maximin and Column minimax (dependent on all row mins and column maxs correct) c2A1: CAO (so both previous marks must have been awarded) states $0 \neq 2$ (or row (maximin) \neq col (minimax) as long as 0 is clearly identified as the row maximin and 2 as the column minimax) and draws the correct conclusion								
d1B1: CA recovery la d2B1ft: Ei correct val then allow 'correct') d3B1: CA	d1B1: CAO (accept reduced matrix or 'column 1 dominates column 2' or column crossed out). Allow recovery later (seeing the correct 2×3 matrix implies all three marks in this part) d2B1ft: Either 3×2 matrix with correct values for G (so all signs changed correctly) or 2×3 matrix with correct values for G (condone incorrect signs). If incorrect column deleted (so B0 for first mark in this part) then allow this mark on the ft for their 3×2 matrix transposed 'correctly' for G (both values and signs 'correct') d3B1: CAO							
e1M1: Set e1A1: CA e1B1ft: At p < 0 here e2B1: CA acceptable e2DM1: F Dependen equations e2A1: CS e3A1ft: A Dependen e4A1: CA	e1M1: Setting up all three probability expressions (allow $p - 1$), implicit definition of 'p' e1A1: CAO (condone incorrect simplification) e1B1ft: Attempt at three lines (correct slant direction and relative intersection with 'axes'), accept $p > 1$ or p < 0 here but must go from 'axis' to 'axis' (give bod if close). Must be functions of $pe2B1: CAO 0 \le p \le 1, scaling correct and clear (expect to see 1 line = 1, although other scalings areacceptable eg 1 line = 2), condone lack of labels. Rulers usede2DM1: Finding their correct optimal point, must have three lines and set up an equation to find 0 \le p \le 1.Dependent on first B mark in this part. Must have three intersection points. Solving all three simultaneousequations and stating incorrect p is M0e2A1: CSO (must have scored all previous marks in (e))e3A1ft: All three options listed must ft from their p (0 \le p \le 1), check page 1 for G should never play 2.Dependent on both previous M marks in this part$							
SC1: If co	lumn 1 is deleted in (d) candidates can earn a maximum in (e) of							
M1 A0 B1 3 with pro	M1 A0 B1 B0 M1 A0 A1 A1 (max. of 5) – the penultimate A mark is for G should play 1 never, play 2 and 3 with probability $\frac{1}{2}$, final A mark is for the value of the game being $-\frac{3}{2}$							
SC2 : If co	lumn 3 is deleted in (d) candidates can earn a maximum in (e) of							
M1 A0 B1	B0 M0 A0 A0 (max. of 2)							

Question Number	Scheme	Mark	S				
3. (a)	Prim: AF, EF, BE, BC, CD, DG	M1 A1	(2)				
(b)	$2 \times 136 = 272 \text{ (km)}$	B1	(1)				
		D1					
(c)	A F E B C D G A	B1 B1	(2)				
	21 20 19 27 24 25 30 = 166 (km)	DI	(2)				
(d)	Starting at F route length is $153 + x$	B1					
	With $x > 21$, 153 + x is greater than 166 so the better upper bound is the one	DB1	(2)				
(0)	Starting at A Length of $PMST = 115$	B 1					
(e)	$115 + 21 + x = 159 \therefore x = 23 \text{ (km)}$	M1 A1	(3)				
	$113 + 21 + \chi = 137 + \chi = 25$ (km)	B2.1.0	(3) (2)				
(f)	$159 \le \text{optimal} \le 166 \text{ [accept } 159 < \text{optimal} \le 166 \text{]}$	12 marks	5				
	Notes for Question 3	·					
no workin A a1A1: CA	g. Award M1 only for the first four arcs (oe) selected correctly if starting at a differ AO (order of arc selection clear)	rent node th	an				
b1B1: CA	O (272)						
c1B1: CA c2B1: CA	O – must be either in terms of nodes or arcs (not weights) O (166)						
d1B1: Eith 174 < value d2DB1: C with 153 (bound state	her $153 + x$ or states a value in the interval $174 < value < 180$ or considers one of the < 180 or $175 \le value \le 179$ Forrect argument that A gives the better upper bound. Must be considering either $x = 100$ for $x = 100$ must be clear that for $x = 100$ must be the better upper bound. This mark is dependent on the previous B mark	the intervals > 21 or $x \ge 1$ to the upper to in (d)	22				
e1B1: CAO (length of RMST) – the length (115 or $19 + 20 + 27 + 24 + 25$) must be either explicitly stated or seen in their working (not just implied by their working) e1M1: Adding the correct two least values (21 and <i>x</i>) to their RMST length (their RMST may be incorrect but must contain only 5 arcs) and equating to 159. Accept, for example, $136 + x = 159$ or $136 + 23 = 159$ or 115 + 21 + 23 = 159 or equivalent calculations using the length of their RMST e1A1: CAO (must be clear that ($x =$) 23 not just embedded in a calculation)							
f1B1: Any indication of an interval containing 159 (as a lower bound) and their stated better upper bound from (d) f2B1: CAO either 159 \leq optimal (oe) \leq 166 or 159 $<$ optimal (oe) \leq 166							

Question Number	Scheme	Marks
5.(a)	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	M1 A1 (2)
(b)	$\begin{array}{ c c c c c c c c } Shadow & 20 & 5 & -1 \\ \hline costs & & & & \\ \hline & & P & Q & R \\ \hline 0 & A & X & X & 14 \\ \hline -13 & B & X & 23 & 22 \\ \hline -11 & C & X & 20 & 33 \\ \hline 11 & D & -9 & X & X \\ \hline \end{array}$	M1 A1
	PQRA $24 - \theta$ $50 + \theta$ BCD θ $7 - \theta$ Entering cell DP, exiting cell DQ	M1 A1 (4)
(c)	Shadow costs2058 P QR0AXX-13BX23-11CX202DX9X	M1 A1 A1 (3)
(d)	(£) 2532	B1 (1)
(e)	Let x_{ij} be the number of units transported from i to j where $i \in \{A, B, C, D\}, j \in \{P, Q, R\}$ and $x_{ij} \ge 0$ Minimise (C =) $20x_{AP} + 5x_{AQ} + 13x_{AR} + 7x_{BP} + 15x_{BQ} + 8x_{BR} + 9x_{CP} + 14x_{CQ} + 21x_{CR} + 22x_{DP} + 16x_{DQ} + 10x_{DR}$ Subject to $x_{AP} + x_{AQ} + x_{AR} \le 74$ or $\sum x_{Aj} \le 74$ $x_{BP} + x_{BQ} + x_{BR} \le 58$ or $\sum x_{Bj} \le 58$ $x_{CP} + x_{CQ} + x_{CR} \le 63$ or $\sum x_{Cj} \le 63$	B1 B1 M1 A1 M1 A1
	$x_{\rm DP} + x_{\rm DQ} + x_{\rm DR} \le 65 \text{ or } \sum x_{Dj} \le 85$ $x_{\rm AP} + x_{\rm BP} + x_{\rm CP} + x_{\rm DP} \le 145 \sum x_{ip} \le 145$ $x_{\rm AQ} + x_{\rm BQ} + x_{\rm CQ} + x_{\rm DQ} \le 57 \text{ or } \sum x_{iQ} \le 57$ $x_{\rm AR} + x_{\rm BR} + x_{\rm CR} + x_{\rm DR} \le 78 \text{ or } \sum x_{iR} \le 78$	A1 (7) 17 marks

Question	Scheme	Marks							
Number	Schenie	IVIAI KS							
	Notes for Question 5								
a1M1: A valid route, only one empty square, AQ used, θ 's balance									
aIAI: Correc	ct route, up to an improved solution (six numbers no zeros)								
b1M1. Findi	ng 7 shadow costs and 6 Improvement indices								
b1A1: Shado	we costs [Alt: A(20), B(7), C(9), D(31), P (0), O(-15), R(-21)] and improvement	t indices CAO							
b2M1: A val	id route, their most negative II chosen, only one empty square used, θ 's balance								
b2A1: CSO (for part (b)) (entering DP, and exiting DQ clearly stated)								
c1M1: Findi	ng 7 shadow costs and all 6 IIs or at least 1 negative II found								
c1A1: CAO	for the shadow costs [Alt: A(20), B(7), C(9), D(22), P(0), Q(-15), R(-12)] and $(1, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,$	5 positive II							
c2A1: CSO (for part (c)) + reason + optimal								
d1B1· CAO	(2532)								
	(2352)								
e1B1: x_{ii} (no	ot just x) defined correctly (must include 'number of' (oe) and 'from i to j' (oe)).	Withold this							
mark if x_{ii} is	further defined as taking the values of either 0 or 1								
e2B1: Defin	ing the set of values for <i>i</i> and <i>j</i> including non-negativity constraint - withold this	mark if							
definition is i	inconsistent with their later use in the objective function and constraints (eg A, B	, in the							
definition bu	t 1, 2, used in constraints and objective)								
e1M1: Objec	tive function (allow one error either in coefficient or variable) – minimise not re	quired for this							
mark	Correct objective function and minimize								
$e^{2M1} \Delta t lea$	- Confect objective function and minimise as 3 constraints listed with unit coefficients (accept – or any inequality for the M	mark) _ rhs							
values must l	be correct	$\operatorname{IIId}(\mathbf{K}) = \operatorname{IIIS}$							
e2A1: At lea	st 5 correct constraints (accept consistent use of $=$ or \leq on at least 5)								
e3A1: All 7 d	constraint correct (accept consistent use of = or \leq on all 7)								
Note: if there	e are inconsistencies between the constraints and the objective function then mark	to the benefit							
of the candid	ate. For example, a candidate who correctly defines x_{ij} and its set of values and v	vrites down							
the constrain	ts correctly (based on their definition of x_{ij}) but in the objective function omits the second	he x (so uses,							
for example,	for example, AP, AQ, etc.) then this would scored B1B1M0A0M1A1A1								

Question Number		Mar	ks							
6.(a)	Maximin B									
6.(a)	Maximin Stage 3 2 1 0	State G H J E F A B C S	Action GT HT JT DH EG EH EJ FH FJ AD AE BF CD CF SA SB SC	Destination T T H G H J J H J E E E E F D F A A B C	Value 8^* 5^* 6^* min (10, 5) = 5^* min (9, 8) = 8* min (8, 5) = 5 min (5, 6) = 5* min (6, 8) = 6* min (17, 8) = 8* min (10, 5) = 5 min (10, 5) = 5* min (10, 5) = 5* min (11, 6) = 6 min (8, 8) = 8* min (12, 5) = 5		В1 M1 A1 M1 A1 M1 A1f	(1) A1 t A1 (10)		
(c)	Maximum weig	-8 (to	onnes)				B 1	(1)		
(d)	Route: $S = R = F$	R = 0 (0) R = G = 7	Γ				B1	(1)		
(e)(i)	Increase HT (by	5) to 10	<u> </u>				B1	(1)		
(ii)	Maximum weig	t = 10 (tonnes)				B1			
	Norman C.	, , , , , , , , , , , , , , , , , , , ,	í í				B1	(3)		
	New route: $S - G$	16 mar	KS							

Question		
Number	Scheme	Marks
	Notes for Question 6	
a1B1: CA Througho • Condon • Only pe • Penalise • Penalise 2 nd , 3 rd a	O out (b): e lack of destination column and/or reversed stage numbers throughout nalise incorrect result in value – ie ignore working values e absence of state or action column with first two A marks earned only e empty/errors in stage column with first A mark earned only nd 4 th M marks - must bring earlier optimal results into calculations at least onc	e
Penalise l	ack of * only once	
b1M1: Fin b1A1: CA b2M1: Se b2A1: Se b3A1: CA b3M1: TI b4A1ft: T b5A1: CA b4M1: Fo b6A1: CA	AO condone missing * here cond stage completed with 3 states and at least 6 rows. Bod if something in each cell cond stage any 2 states correct AO all 3 states correct (no missing/extra rows) hird stage completed with 3 states and at least 6 rows. Bod if something in each cell hird stage any two states correct. Follow through their * values or the correct * values O all 3 states correct (no missing/extra rows) urth stage completed with 1 state and at least 3 rows. Bod if something in each cell O final state correct (no missing/extra rows)	5
c1B1: CA	O weight (8) (dependent on scoring all M marks in (b))	
d1B1: CA	O route $(S - B - E - G - T)$ (dependent on scoring all M marks in (b))	
e1B1: Ind e2B1: CA e3B1: CA	ication of either increasing HT by 5 or increasing HT to 10 O (10) O $(S - C - D - H - T)$	
	Special Cases for (b), (c) and (d)	
SC1 Mini SC2 Max SC3 Mini SC4 Max SC5 Mini SC6 Wor SC7 Reve	max: M1 A1 M1 A0 A0 M1 A1 A0 M1 A0 B1 B1 (Max 8/12) imum: M1 A1 M1 A0 A0 M1 A0 A0 M1 A0 B0 B1 (Max 6/12) mum: As above (SC2) imax: M1 A1 M1 A0 A0 M1 A0 A0 M1 A0 B0 B0 (Max 5/12) min: As above (SC4) king forwards: M1 A0 M1 A0 A0 M1 A0 A0 M1 A0 B0 B0 (Max 4/12) ersed states: M1 A0 M1 A0 A0 M1 A0 A0 M1 A1 B1 B1 (Max 7/12)	

Question Number		Scheme						
SC1 Mini	max:							
		Stage	State	Action	Destination	Value		
		3	G	GT	Т	8*		
			Η	HT	Т	5*		
			J	JT	Т	6*		
		2	D	DH	Н	$\max(10, 5) = 10^*$		
			E	EG	G	$\max(9, 8) = 9$		
				EH	Н	$\max(8, 5) = 8$		
				EJ	J	$\max(7, 6) = 7^*$		
			F	FH	Н	$\max(8, 5) = 8$		
				FJ	J	$\max(5, 6) = 6^*$		
		1	Α	AD	D	$\max(8, 10) = 10$		
				AE	E	$\max(6, 7) = 7^*$		
			В	BE	E	$\max(17, 7) = 17$		
				BF	F	$\max(9, 6) = 9^*$		
			C	CD	D	max (10, 10)=10*		
				CF	F	$\max(10, 6) = 10^*$		
		0	S	SA	А	$\max(11, 7) = 11$		
				SB	В	$\max(8, 9) = 9^*$		
				SC	C	$\max(12, 10) = 12$		

Weight: 9 Route: S - B - F - J - T

SC2 Maximum:

Stage	State	Action	Destination	Value
3	G	GT	Т	8*
	Н	HT	Т	5*
	J	JT	Т	6*
2	D	DH	Н	10 + 5 = 15*
	E	EG	G	9 + 8 = 17*
		EH	Н	8 + 5 = 13
		EJ	J	7 + 6 = 13
	F	FH	Н	$8 + 5 = 13^*$
		FJ	J	5 + 6 = 11
1	Α	AD	D	8 + 15 = 23*
		AE	E	6 + 17 = 23*
	В	BE	E	17 + 17 = 34*
		BF	F	9 + 13 = 22
	С	CD	D	10 + 15 = 25*
		CF	F	10 + 13 = 23
0	S	SA	A	11 + 23 = 34
		SB	В	8 + 34 = 42*
		SC	С	12 + 25 = 37

Route: S - B - E - G - T

Question
NumberSchemeMarks

SC3 Minimum:

Stage	State	Action	Destination	Value
3	G	GT	Т	8*
	Н	HT	Т	5*
	J	JT	Т	6*
2	D	DH	Н	10 + 5 = 15*
	Е	EG	G	9 + 8 = 17
		EH	Н	8 + 5 = 13*
		EJ	J	7 + 6 = 13*
	F	FH	Н	8 + 5 = 13
		FJ	J	5 + 6 = 11*
1	А	AD	D	8 + 15 = 23
		AE	E	6 + 13 = 19*
	В	BE	E	17 + 13 = 30
		BF	F	9 + 11 = 20*
	С	CD	D	10 + 15 = 25
		CF	F	10 + 11 = 21*
0	S	SA	A	11 + 19 = 30
		SB	В	8 + 20 = 28*
		SC	С	12 + 21 = 33

Route: S - B - F - J - T

SC4 Maximax:

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
H HT T 5* J JT T 6*	
J JT T 6*	
2 D D H H max (10, 5) =	10*
E EG G max (9, 8) =	9*
EH H $max (8, 5) =$	= 8
EJ J max (7, 6) =	= 7
$F \qquad FH \qquad H \qquad max (8, 5) =$	8*
FJ J max (5, 6) =	= 6
1 A AD D max (8, 10) =	10*
AE E max (6, 9) =	= 9
B BE E max (17, 9) =	17*
BF F max (9, 8) =	= 9
C CD D max (10, 10)=	=10*
CF F max (10, 8) =	10*
0 S SA A max (11, 10)	= 11
SB B max (8, 17) =	17*
SC C max(12, 10) =	=12

Question Number		Scheme					Marks
SC5 Minimin:							
		Stage	State	Action	Destination	Value	
		3	G	GT	Т	8*	
			Н	HT	Т	5*	
			J	JT	Т	6*	
		2	D	DH	Н	$\min(10, 5) = 5^*$	
			Е	EG	G	$\min(9, 8) = 8$	
				EH	Н	$\min(8, 5) = 5^*$	
				EJ	J	$\min(7, 6) = 6$	
			F	FH	Н	$\min(8, 5) = 5^*$	
				FJ	J	$\min(5, 6) = 5^*$	
		1	Α	AD	D	$\min(8, 5) = 5^*$	
				AE	E	$\min(6, 5) = 5^*$	
			В	BE	E	$\min(17, 5) = 5^*$	
				BF	F	$\min(9, 5) = 5^*$	
			C	CD	D	$\min(10, 5) = 5^*$	
				CF	F	$\min(10, 5) = 5^*$	
		0	S	SA	A	$\min(11, 5) = 5^*$	
				SB	В	$\min(8, 5) = 5^*$	
				SC	C	$\min(12, 5) = 5^*$	

SC6 Working forwards S to T:

Stage	State	Action	Destination	Value
3	Α	AS	S	11*
	В	BS	S	8*
	С	CS	S	12*
2	D	DA	А	$\min(8, 11) = 8$
		DC	С	min (10, 12) =10*
	E	EA	А	$\min(6, 11) = 6$
		EB	В	$\min(17, 8) = 8^*$
	F	FB	В	$\min(9, 8) = 8$
		FC	С	min (10, 12) =10*
1	G	GE	E	$\min(9, 8) = 8^*$
	Н	HD	D	min (10, 12) =10*
		HE	E	$\min(8, 8) = 8$
		HF	F	$\min(8, 10) = 8$
	J	JE	E	$\min(7, 8) = 7^*$
		JF	F	$\min(5, 10) = 5$
0	Т	TG	G	$\min(8, 8) = 8^*$
		TH	Н	$\min(5, 10) = 5$
		TJ	J	$\min(6, 7) = 6$

Question	Scheme	Marks
Number	Seliellie	Ivia K5

SC7 Reversed States:

Stage	State	Action	Destination	Value
3	Т	TG	G	8*
		TH	Н	5*
		TJ	J	6*
2	G	GE	Е	$\min(9, 8) = 8^*$
	Н	HD	D	$\min(10, 5) = 5^*$
		HE	E	$\min(8, 5) = 5$
		HF	F	$\min(8, 5) = 5^*$
	J	JE	Е	$\min(7, 6) = 6$
		JF	F	$\min(5, 6) = 5^*$
1	D	DA	А	$\min(8, 5) = 5$
		DC	С	$\min(10, 5) = 5^*$
	Е	EA	А	$\min(6, 8) = 6^*$
		EB	В	min (17, 8) = 8*
	F	FB	В	$\min(9, 5) = 5$
		FC	С	$\min(10, 5) = 5^*$
0	А	AS	S	$\min(11, 6) = 6$
	В	BS	S	$\min(8, 8) = 8^*$
	С	CS	S	$\min(12, 5) = 5$

Weight: 8 Route: S - B - E - G - T

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R ORL, United Kingdom