une 2005
 6664 Core Mathematics C2
 Mark Scheme

Question number	Scheme	Marks
1.	$\begin{array}{ll} \frac{\mathrm{d} y}{\mathrm{~d} x}=4 x-12 & \\ 4 x-12=0 & x=3 \\ & y=-18 \tag{4} \end{array}$	B1 M1 A1ft A1
	M1: Equate $\frac{\mathrm{d} y}{\mathrm{~d} x}$ (not just y) to zero and proceed to $x=\ldots$ A1ft: Follow through only from a linear equation in x. Alternative: Alternative: $\begin{aligned} & \overline{(x-3)^{2}} \quad \text { B1 for }(x-3)^{2} \\ & y=2\left(x^{2}-6 x\right)=2\left\{(x-3)^{2}-9\right\} \quad x=3 \end{aligned}$ M1 for attempt to complete square and deduce $x=\ldots$ $\operatorname{A1ft}\left[(x-a)^{2} \Rightarrow x=a\right]$ $y=-18$ A1	

Question number	Scheme	Marks
2.	(a) $x \log 5=\log 8, \quad x=\frac{\log 8}{\log 5}, \quad=1.29$ (b) $\log _{2} \frac{x+1}{x} \quad$ (or $\log _{2} 7 x$) $\frac{x+1}{x}=7 \quad x=\ldots, \quad \frac{1}{6} \quad$ (Allow 0.167 or better)	M1, A1, A1 (3) B1 M1, A1
	(a) Answer only 1.29 : Full marks. Answer only, which rounds to 1.29 (e.g. 1.292): M1 A1 A0 Answer only, which rounds to 1.3 : M1 A0 A0 Trial and improvement: Award marks as for "answer only". (b) M1: Form (by legitimate log work) and solve an equation in x. Answer only: No marks unless verified (then full marks are available).	

Question number	Scheme	Marks
3.	(a) Attempt to evaluate $\mathrm{f}(-4)$ or $\mathrm{f}(4)$ $f(-4)=2(-4)^{3}+(-4)^{2}-25(-4)+12 \quad(=128+16+100+12)=0,$ so is a factor. (b) $(x+4)\left(2 x^{2}-7 x+3\right)$ $\ldots \ldots \ldots .(2 x-1)(x-3)$	M1 A1 (2) M1 A1 M1 A1 (4)
	(b) First M requires $\left(2 x^{2}+a x+b\right), a \neq 0, b \neq 0$. Second M for the attempt to factorise the quadratic. Alternative: $(x+4)\left(2 x^{2}+a x+b\right)=2 x^{3}+(8+a) x^{2}+(4 a+b) x+4 b=0$, then compare coefficients to find values of a and b. [M1] $\begin{equation*} a=-7, b=3 \tag{A1} \end{equation*}$ Alternative: Factor theorem: Finding that $\mathrm{f}\left(\frac{1}{2}\right)=0, \therefore(2 x-1)$ is a factor [M1, A1] n.b. Finding that $\mathrm{f}\left(\frac{1}{2}\right)=0, \therefore\left(x-\frac{1}{2}\right)$ is a factor scores M1, A0 , unless the factor 2 subsequently appears. Finding that $\mathrm{f}(3)=0, \therefore(x-3)$ is a factor [M1, A1]	

Question number	Scheme	Marks
4.	(a) $1+12 p x,+\frac{12 \times 11}{2}(p x)^{2}$ $\begin{gathered} \text { (b) } 12 p(x)=-q(x) \quad 66 p^{2}\left(x^{2}\right)=11 q\left(x^{2}\right) \\ \Rightarrow \quad 66 p^{2}=-132 p \\ p=-2, \quad q=24 \end{gathered}$ (Equate terms, or coefficients) (Eqn. in p or q only)	B1, B1 M1 M1 A1, A1 (4) 6
	(a) Terms can be listed rather than added. First B1: Simplified form must be seen, but may be in (b). (b) First M: May still have $\binom{12}{2}$ or ${ }^{12} C_{2}$ Second M: Not with $\binom{12}{2}$ or ${ }^{12} C_{2}$. Dependent upon having p 's in each term. Zero solutions must be rejected for the final A mark.	

Question number	Scheme	Marks
5.		B1 M1 M1 A1 B1 M1 M1 A1 (4)
	(a) First M: Must be subtracting from 180 before subtracting 10. (b) First M: Must be subtracting from 360 before dividing by 2, or dividing by 2 then subtracting from 180. In each part: Extra solutions outside 0 to 180 : Ignore. Extra solutions between 0 and 180 : A0. $\begin{aligned} & \text { Alternative for (b): (double angle formula) } \\ & \begin{array}{crl} 1-2 \sin ^{2} x=-0.9 & 2 \sin ^{2} x=1.9 & \text { B1 } \\ \sin x=\sqrt{0.95} & \text { M1 } \\ x=77.1 & \\ & x=180-77.1=102.9 & \text { M1 A1 } \end{array} \end{aligned}$	

Question number	Scheme	Marks
6.	(a) Missing y values: $1.6(00) 3.33{ }^{3.2(00)}$ (b) $(A=) \frac{1}{2} \times 4,\{(0+0)+2(1.6+2.771+3.394+3.2)\}$ $=43.86$ (or a more accurate value) (or 43.9 , or 44) (c) Volume $=A \times 2 \times 60$ $=5260\left(\mathrm{~m}^{3}\right) \quad(\text { or } 5270, \text { or } 5280)$	B1, M1 A1ft A1 (4) M1 A1 (2)
	(b) Answer only: No marks. (c) Answer only: Allow. (The M mark in this part can be "implied").	

Question number	Scheme	Marks
7.	(a) $\frac{\sin x}{8}=\frac{\sin 0.5}{7}$ or $\frac{8}{\sin x}=\frac{7}{\sin 0.5}, \quad \sin x=\frac{8 \sin 0.5}{7}$ $\sin x=0.548$ (b) $\begin{aligned} & x=0.58 \quad(\alpha) \\ & \pi-\alpha=2.56 \end{aligned}$ (This mark may be earned in (a)).	M1 A1ft A1 (3) B1 M1 A1ft (3)
	(a) M: Sine rule attempt (sides/angles possibly the "wrong way round"). A1ft: follow through from sides/angles are the "wrong way round". Too many d.p. given: Maximum 1 mark penalty in the complete question. (Deduct on first occurrence).	

Question number	Scheme	Marks
8.	(a) Centre $(5,0)$ (or $x=5, y=0$) (b) $(x \pm a)^{2} \pm b \pm 9+(y \pm c)^{2}=0 \Rightarrow r^{2}=\ldots$ or $r=\ldots \quad$, Radius $=4$ (c) $(1,0),(9,0) \quad$ Allow just $x=1, x=9$ (d) Gradient of $A T=-\frac{2}{7}$ $y=-\frac{2}{7}(x-5)$	B1 B1 M1, A1 (2) B1ft, B1ft (2) B1 M1 A1ft (3)
	(a) $(0,5)$ scores B1 B0. (d) M1: Equation of straight line through centre, any gradient (except 0 or ∞) (The equation can be in any form). A1ft: Follow through from centre, but gradient must be $-\frac{2}{7}$.	

Question number	Scheme	Marks
9.	(a) $\begin{array}{lcc} (S=) a+a r+\ldots+a r^{n-1} & \text { " } S=" \text { not required. } & \text { Addition required. } \\ (r S=) a r+a r^{2}+\ldots+a r^{n} & " r S=" \text { not required } & (\mathrm{M}: \text { Multiply by } r) \\ S(1-r)=a\left(1-r^{n}\right) & S=\frac{a\left(1-r^{n}\right)}{1-r} \quad(\text { M: Subtract and factorise }) \quad(*) \end{array}$ (b) $a r^{n-1}=35000 \times 1.04^{3}=39400$ (M: Correct a and r, with $n=3,4$ or 5). (c) $n=20$ (Seen or implied) $S_{20}=\frac{35000\left(1-1.04^{20}\right)}{(1-1.04)}$ (M1: Needs any r value, $a=35000, n=19,20$ or 21). (A1ft: ft from $n=19$ or $n=21$, but r must be 1.04). $=1042000$	B1 M1 M1 A1cso (4) M1 A1 (2) B1 M1 A1ft A1 (4)
	(a) B1: At least the 3 terms shown above, and no extra terms. A1: Requires a completely correct solution. Alternative for the 2 M marks: M1: Multiply numerator and denominator by $1-r$. M1: Multiply out numerator convincingly, and factorise. (b) M1 can also be scored by a "year by year" method. Answer only: 39400 scores full marks, 39370 scores M1 A0. (c) M1 can also be scored by a "year by year" method, with terms added. In this case the B1 will be scored if the correct number of years is considered. Answer only: Special case: 1042000 scores 2 B marks, scored as 1, 0, 0, 1 (Other answers score no marks). Failure to round correctly in (b) and (c): Penalise once only (first occurrence).	

Question number	Scheme	Marks
10.	(a) $\int\left(2 x+8 x^{-2}-5\right) \mathrm{d} x=x^{2}+\frac{8 x^{-1}}{-1}-5 x$ $\left[x^{2}+\frac{8 x^{-1}}{-1}-5 x\right]_{1}^{4}=(16-2-20)-(1-8-5)$ $x=1: y=5$ and $x=4: y=3.5$ Area of trapezium $=\frac{1}{2}(5+3.5)(4-1) \quad(=12.75)$ Shaded area $=12.75-6=6.75$ (M: Subtract either way round) (b) $\frac{\mathrm{d} y}{\mathrm{~d} x}=2-16 x^{-3}$ (Increasing where) $\frac{\mathrm{d} y}{\mathrm{~d} x}>0$; For $x>2, \frac{16}{x^{3}}<2, \therefore \frac{\mathrm{~d} y}{\mathrm{~d} x}>0 \quad$ (Allow \geq)	M1 A1 A1 M1 B1 M1 M1 A1 (8) M1 A1 dM1; A1 (4)
	(a) Integration: One term wrong M1 A1 A0; two terms wrong M1 A0 A0. Limits: M1 for substituting limits 4 and 1 into a changed function, and subtracting the right way round. Alternative: $x=1: y=5 \text { and } x=4: y=3.5$ Equation of line: $y-5=-\frac{1}{2}(x-1) \quad y=\frac{11}{2}-\frac{1}{2} x$, subsequently used in integration with limits. $\begin{aligned} & \left(\frac{11}{2}-\frac{1}{2} x\right)-\left(2 x+\frac{8}{x^{2}}-5\right) \\ & \int\left(\frac{21}{2}-\frac{5 x}{2}-8 x^{-2}\right) \mathrm{d} x=\frac{21 x}{2}-\frac{5 x^{2}}{4}-\frac{8 x^{-1}}{-1} \end{aligned}$ (M: Subtract either way round) (Penalise integration mistakes, not algebra for the ft marks) $\begin{aligned} & {\left[\frac{21 x}{2}-\frac{5 x^{2}}{4}-\frac{8 x^{-1}}{-1}\right]_{1}^{4}=}(42-20+2)-\left(\frac{21}{2}-\frac{5}{4}+8\right) \\ & \text { Shaded area }=6.75 \end{aligned}$ (M: Right way round) (The follow through marks are for the subtracted version, and again deduct an accuracy mark for a wrong term: One wrong M1 A1 A0; two wrong M1 A0 A0.) Alternative for the last 2 marks in (b): M1: Show that $x=2$ is a minimum, using, e.g., $2^{\text {nd }}$ derivative. A1: Conclusion showing understanding of "increasing", with accurate working.	$3^{\text {rd }} \mathrm{M} 1$ $4^{\text {th }} \text { M1 }$ $1^{\text {st }}$ M1 A1ft A1ft $2^{\text {nd }} \mathrm{M} 1$ A1

