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Core Mathematics 2 (6664) – Principal Examiner’s report 

 

General introduction  

The paper overall was found to be accessible to all students, though there were some 

discriminating places that challenged at the high end. Many of the Core Mathematics 2 

topics were shown to be well understood, though logarithms still continue to cause 

difficulties for students. Variations on common themes, such as a leading negative term 

in the cubic in Question 6 or an area under the x-axis on Question 9, proved a good test 

of students’ understanding of the topics.  

 

There were many well crafted answers, with well explained responses to ‘show that’ 

questions. In contract there were also some poorly presented responses with difficult to 

read hand writing, making it hard to work out what the students were saying. 

There were also a number of students who resorted to using calculator methods to solve 

questions without showing full working, which should be discouraged as questions are 

often requiring a particular method, indicated by a ‘hence’ or other similar instruction. 

 

Question 1 

This was an accessible question and a lucrative source of marks for the overwhelming 

majority of students. Those who retained the original expression and expanded binomially 

were generally the most successful; those who factorised out 35 occasionally made errors 

in the x terms, where brackets and powers were concerned. 

 

The majority of students were aware that ‘binomial coefficients’ are required and the nCr 

notation was the most commonly used and most attached them to the correct power of x, 

but a few missed a power out in the series.  A few obtained their coefficients from Pascal’s 

Triangle but many others used the expanded form of n(n−1)⁄2 etc. 

 

Many students lost marks by missing negative signs in the second and fourth terms, while 

another common error was the bracketing mistake of forgetting to raise the (−1⁄3 ) 

coefficient of x to the same power as x in the third and fourth terms. 

 

There were only a small number of students who made the bracketing error  nCr  (3
r −(1⁄3 

x)r) and hence obtained spurious extra constant terms which they then added to the 243. 

 

There were some students who lost the final mark through carelessly expressing 10⁄3  as 

3.3 and omitting the recurring 'dot'. 

 

 

  



 

Question 2 

This was a well answered question with most students achieving at least some of the 

marks. The majority were able to draw the correct diagram then correctly state and apply 

the Sine Rule. However, a large proportion of students found only one angle, 70.5º, 

perhaps not having noted the request for ‘2 possible values’ or not knowing how to 

proceed or having forgotten the ambiguous case and the need to subtract from 180º. A 

significant number of those who did attempt to find a second angle incorrectly opted to 

find angle BAC rather than finding the second possibility for angle BCA. Of those students 

who correctly found 109.5º most stated and used ‘180-Ans’ or similar with a smaller 

number of students drawing the sine graph or unit circle to work out the second possibility 

using symmetry. A few added 70.5º to 90º and a few thought the second solution meant 

convert your answer to radians. 

 

Occasionally students mislabelled the triangle and as a result needed to use the cosine 

rule in order to find the third side (12.6). Some students gave up at this point but others 

went on to use the sine rule and calculate an angle thus gaining 1 mark. Another reason 

for loss of marks was premature rounding used in the calculation of the angle θ in the 

triangle or in the result of sin θ. It is important to state any formula used in order to gain 

credit if there are errors in its application. 

 

Very few students used radians, either correctly or using 50 radians. A few confused the 

sides and angles. The alternative method using the cosine rule and obtaining a quadratic 

equation in 'a' was rarely seen and those who did use it usually failed to solve and obtain 

14.6 and continue to find an angle. 

 

  



 

Question 3 

This was one of the easiest questions on the paper and many students were able to score 

full marks. 

 

In Q03(a) the vast majority of students were able to correctly obtain y = 6 although there 

were a few who failed to achieve this value as a result of poor calculator skills. 

 

Not surprisingly, many students scored well in part Q03(b) and most seemed very familiar 

with the trapezium rule. There was the usual confusion with ordinates and strips and a 

common error was to use h = 2⁄5 , which is surprising given a table is given in the question 

paper.  There seems to be an over reliance on the formula h = (b − a)⁄n  rather than 

interpreting the width from the table. 

 

There were the usual bracketing errors, although many of these recovered to achieve full 

marks. A small number of students included an extra repeated term in their bracket, losing 

the method mark. A very small number attempted to integrate rather than use the 

trapezium rule. 

 

Accuracy was good with the majority giving their final answer to 2 decimal places as 

instructed. 

 

Q03(c) was attempted by most students with varying degrees of success.  Many worked 

out that they were required to add on 10 by evaluating 0∫
2

5 dx, while a few were able to 

recognise the additional 10 without any working, realising that this was a translation of 

the given graph by 5 in the y direction, so the addition of a 5×2 rectangle was required.  

Another, often successful, method was to add 5 to all the initial values and apply the 

trapezium rule again, although this was susceptible to errors in calculation. 

 

The most common error was to add 5 to the answer in part (b).  Other students added 25 

(from 5×5 added to the original table). 
 

  



 

Question 4 

This was a very well answered question with many students gaining full marks. 

 

In parts Q04(a) and Q04(b) most students were correctly able to quote and use the 

formulae for arc length and sector area in radian form. A small minority converted the 

given angle from radians to degrees, before completing the required calculations, usually 

successfully. 

 

A few students confused the two formulae, using an incorrect angle such as 1.77π, or 

incorrectly applying the formulae for radians after converting the angle to degrees. A 

small number of students assumed that the sketch was a semi-circle and treated AF, BF, 

DF and EF as radii of length 3.5. 

 

In part Q04(c) many students used 1⁄2ab sinC to find the area of the triangle and proceeded 

to add two of them to the area of their sector.   

 

Although the area of the triangle was generally well attempted common errors included 

using a wrong side length, A = 1⁄2×3.5×3.5×sin θ or omitting the sine, A = 1⁄2×3.5×3.7×θ. 

There were also errors in finding the angle with some students using 2π −1.77 rather than 

π − 1.77 and also forgetting to divide by 2. A few students assumed the triangles were 

right-angled. 

 

Students ought to be aware that the formula Area = 1⁄2 ab sinC is valid in radians, there 

is no need to convert the angle to degrees. Some found the angle and converted it to 

degrees unnecessarily leading to accuracy errors in the final answer. Many students used 

insufficient accuracy for the angle of their sector as 0.69 and gave the answer as 19.08 or 

incorrectly rounded their answer to 19.03, thus losing the final answer mark. 

 

Using the height of the triangle h = 3.5sin(0.685) followed by Area = 1⁄2 base × height 

was only used by a very small number of students, though they were often successful. 

 

The majority of students earned at least the second M mark in Q04(c) for adding double 

their 'triangle' area to their 'sector' area, though a few used their arc length instead. 

 

  



 

Question 5 

This circle question was answered very well with many fully correct responses. Very few 

students used the equation of the circle in the form x2 + y2 + 2gx + 2fy + c = 0  to answer 

the question. 

 

In Q05(a) most students were able to gain at least the method mark. Many did so by 

identification, recognising they needed half of the x and y coefficients in some way. Others 

attempted to complete the square on each term to obtain (x ± 5)2 + (y ± 3)2 = …, though 

in some cases there was algebraic error in method (such as adding rather than subtracting 

the 25 and 9 from the terms). However they could still identify the correct centre (5,−3) 

from this, although some did still lose the accuracy mark as a result of sign errors. 

Answers of (−5,3) or (5,3) were common. 

 

Part Q05(b) caused more problems and often led to incorrect answers, in particular, r=16 

or r=4. These incorrect answers were sometimes stated following fully correct work as 

some students failed to remember the square of the radius is given in the circle equation.  

Another common error was poor manipulation of +30 which resulted in an incorrect 

answer for the radius of 8.  Many students did not complete the square correctly, adding 

the square value instead of subtracting, and though they could gain both marks in Q05(a) 

from this, they could gain no marks here.   

 

Part Q05(c) was well attempted by the majority of students.  Substituting x=4 (even into 

an incorrect circle equation) enabled 2 of the 3 marks to be scored provided two solutions 

for y were found by correct method.  It was also possible for students to score full marks 

here by using the given circle equation and this meant that full marks could still be scored 

here even when errors had been made in earlier parts. 

 

Students often chose to unnecessarily expand the (y+3)2 bracket and go on to use the 

quadratic formula, rather than simply square root both sides of the equation. This method 

saw more errors with sign changes resulting in the loss of the final accuracy mark.  The 

quadratic formula was generally used correctly although the usual errors of using b 

instead of −b were seen. The most efficient solutions moved from (y+3)2 = 3 immediately 

to y+3 = ±√3. 

 

The geometric approach was rarely seen, but was usually successful when it was. 

 
 

  



 

Question 6 

Many students obtained full marks on this question, though a disappointing number lost 

the A mark in Q06(a) omitting a conclusion.  There are also many students who do not 

distinguish between questions requiring factorization of a function and others asking for 

solution of an equation, dividing the function by the coefficient of the highest power or 

multiplying by (−1) and then not reversing that operation at the end. 

 

In Q06(a) the vast majority used the factor theorem successfully; there were only very 

few instances of long division being used, which gained no marks in this part.  A very 

small number substituted x = 3, not x = −3.  It is worth reiterating that many students 

carelessly omitted to state that (x+3) was a factor or give a suitable conclusion, resulting 

in a lost mark.   

 

In Q06(b) most students used long division to obtain the desired quadratic, however there 

were often sign errors present in the final brackets or an incomplete factorisation.  Most 

persevered with the original quadratic, but a many instead replaced this with a quadratic 

beginning with 6x2. Many of these students then forgot to adjust their brackets 

accordingly at the end, or to add a factor of (−1) to their factorization.   

 

A significant number of students used the quadratic formula to obtain the roots of −6x2 + 

11x + 7, or equivalent, some of these going on to present the factors of f(x) as  

(x + 3)(x – 7⁄3)(x + 1⁄2), which does not show an acceptable attempt at the original cubic’s 

factorization.  Many others simply gave the roots. 

 

The final answer to this part required a set of brackets with no common factors, hence the 

likes of (x + 3)(3x – 7)(−2x – 1) were not acceptable, whereas −6(x + 3)(x – 7⁄3)(x + 1⁄2) 

was. Students need to heed the ‘completely’ in the question and ensure any obvious 

numerical factors are accounted for. 

 

For Q06(c), a smaller proportion gained full marks, though some of this was due to an 

incorrect answer to Q06(b).  However, those that had either (3x – 7) or (7 – 3x) as a factor 

were able to access full marks and most completed a fully correct solution, though a few 

obtained 2y = 3⁄7.  There were also many who correctly obtained 3×2y = 7, but then 

proceeded to 6y = 7, demonstrating a fundamental misunderstanding of the rules for 

combining powers, and resulting in no marks for this part. There were also many students 

who thought the roots of the cubic equated to 2y, 22y and 23y, equating them in order to 

their values of x – often ending up with 22y or 23y = 7⁄3 instead.   

 

Most were able to state that the negative values were invalid, though nearly as many 

simply referred to “Math Error”, the result of trying to obtain the logarithm of a negative 

number on their calculator, and so again failing to show an appreciation for indices work. 

Also, a minority tried to find logs of negative numbers by ignoring the minus signs 

resulting in extra solutions that lost the final A mark. 

 

A few students failed to see any connection between Q06(b) and Q6(c) and gained no 

marks here. 

 

  



 

Question 7 

Logarithms continue to be a topic that test even the best students, and this proved a testing 

question. 

 

Q07(a) was the most challenging of the two parts overall with the most common score 

being M1M0A0. 

 

Most students secured the first mark by applying the power law correctly, usually to the 

left-hand side. The majority of these students then went on to remove logs correctly, 

although sometimes by an indirect route involving collecting log terms on one side, using 

the subtraction law and then proceed from log(A/B) = 0 to A/B = 1. It was the next step 

that proved the most difficult; many students expanded the brackets on the left-hand side 

to give a quadratic, but then were unable to solve their quadratic by a suitable method and 

instead made one of the x's the subject ending with an expression containing x on both 

sides. The students who realised they needed to square root both sides to give the much 

simpler “x+a =...”  had more success, but still made errors as they did not correctly deal 

with both the 16 and a6.   

 

Another common mistake seen when using the power law on the right-hand side was 

interpreting log(16a6) as log(16a)6 when applying log rules. 

 

Some students who used a valid method then lost the final A mark by neglecting to reject 

the negative square root, but the majority who worked correctly towards the final answer 

gave only the positive square root and gained full marks. 

 

Q07(b) was done much better with full marks being the most common score. Students 

displayed a high level of competence in this type of log work, with the first of the two 

methods shown in the mark scheme being by far the most common approach. 

Of those who did not gain full marks, the subtraction law was generally used correctly 

thus gaining at least the first mark. Only a few made the error of writing log(..)/log(..) 

instead of log(../..). 

 

The second mark was also generally well attempted, though some students then struggled 

to remove logs correctly, a common error being cubing 2 as opposed to squaring 3. Errors 

from this point were usually slips in rearranging when making y the subject, or failing to 

make y the subject at all, either erroneously making b the subject, or leaving as 9y = 10b, 

which lost them the final two marks. When a correct linear equation was reached and an 

attempt at making y the subject followed, the correct usually resulted, though a number 

of cases were seen where errors in rearrangement occurred even at this stage. 

 

 

  



 

Question 8 

This was another question that proved challenging with fewer full mark responses to this 

question than for any other question on the paper. 

 

In Q08(a) the vast majority of students showed good familiarity with the Pythagorean 

trigonometric identity and very few did not secure the B mark. Indeed, most went on to 

rearrange their equation to a suitable form to gain the M mark. It was the final stage of 

completing the proof that caused students difficulties with many unable to communicate 

effectively. It was common for students to omit a suitable intermediate step between 

forming a 3 term quadratic and the final result so scored A0. Some students went to the 

other extreme and showed excessive working, suggesting they did not know what was 

considered sufficient. 

 

The second method, Way 2 on the mark scheme, was seen occasionally, but students often 

omitted any conclusion and gained two of the three marks available. More common was 

to see students work from both ends towards quadratic before deducing their expressions 

were equivalent. 

 

Q08(b) was done with varying degrees of success, but the mark patterns generated were 

very regular. A common response seen was a correct start by square rooting both sides of 

the equation; in this method, a common error was students forgetting the negative square 

root, thus only gaining a potential maximum of three marks. It was this error that good 

students commonly made to prevent full marks on the question. 

 

Many also incurred errors when making sin x the subject, and 3sinx – 1 was often 

misinterpreted as 3sin(x–1) or 3(sinx – 1) meaning incorrect processing with the 

rearrangement so no further marks could be scored. Some thought they were solving 

(3sinx – 1)2 = 0 and gave sinx = 1/3 as a solution. 

 

Alternatively, many students expanded the brackets of the equation from part Q08(a) and 

attempted to solve it using the quadratic formula. This was often done correctly with less 

chance of losing the negative square root, but subsequent accuracy errors were all too 

often incurred. Those who used decimal answers for sinx sometimes did not use enough 

figures to obtain the accuracy required. Some students also were unable to find the 

solutions arising from the principle value x = −7.94º, attempting 180º–7.94º for example, 

or omitting them completely as −7.94º is “out of range”. 

 

  



 

Question 9 

This question proved to be a discriminating question producing marks across the full 

range from 0 to 12 with access for most students but challenging even good students in 

places. 

 

Q09(a) provided students with the opportunity to demonstrate an understanding of the 

structure of geometric series. There were many very good coherent well set out answers. 

Nevertheless, many failed to even identify the given terms as a, ar and ar2, labelling 

instead as u1, u2 and u3 and often making no progress. Attempts at arithmetic sequence 

approaches were not uncommon, and also attempts at forming the sum of three terms 

were attempted (usually unsuccessfully, although some cases did succeed this route). 

The students who did appreciate that r=un+1/un usually went on to gain at least the first 

three marks, and there were many students who started directly with the equation 

5 7 2 10

7 5 5 7

k k

k k

 


 
 or a variation of this, such as 

5 7
(7 5) 2 10

7 5

k
k k

k

 
    

 
.  Alternative 

methods, such as using the sum of the first three terms, tended not to be as successful due 

to the more demanding nature of the algebraic manipulation required to form the correct 

three term quadratic equation in k. 

 

Students should be reminded that in questions in which the answer is given to them in the 

form of a ‘show that’ then examiners are expecting to see sufficient working to prove that 

the result has been derived accurately (and not just stated after only a line or two of either 

correct or incorrect working). 

 

A number of students made simple sign errors when manipulating their algebraic 

expressions or, after completing all required working accurately, failed to write down the 

required quadratic equation accurately either by missing off the equal zero or stating one 

of the coefficients or the constant term incorrectly.    

 

That the equation for k was given on the paper gave access to Q09(b) and the majority of 

students did therefore gain at least one mark in this part. Incorrect attempts to solve the 

equation were rare. 

 

Attempting to solve the equation was the most common route though many students opted 

only to verify that 9/11 was a solution of the given equation, and so gained only one mark. 

For those who did solve the equation, those using the formula generally stated both roots 

before making a selection, but those who chose to factorise did not always indicate in any 

way why the root from the other factor need not be considered. The assumption was that 

obtaining 9/11 was sufficient, without realising the need to demonstrate it could be 

nothing else, failing to pick up on the relevance of stating ‘given that k is not an integer’ 

in the question. Students could benefit from being advised to identify how the information 

is relevant in such a ‘show that’ question. 

 

Q09(c) again provided challenges for students. Though many were able to successfully 

complete all parts, there were also many who were unable to identify r correctly, using k 

instead. Obtaining a value for a was more successful, though often this was implied in 

working or embedded in a formula rather than stated. A good methodology of identifying 

key information first before using it would benefit students. 



 

Those who correctly stated both the values of a and r usually went on to correctly find 

the fourth term of the sequence. The most common method here was using the formula 

for the fourth term, but astute students were able to use the third term and their ratio to 

find the fourth term. 

 

Common errors were either considering ar4, assuming that the common ratio was equal 

to k or finding the ratio to be 4 or ¼. Bracketing errors also occurred, but in this case the 

answer ended up negative anyway, so it was not possible to tell if they had been included 

or not. 

 

Finding the sum of the first 10 terms was less successfully attempted. Though many 

students correctly found the sum of the first 10 terms there were also many who did not 

deal accurately with the negative value of the common ratio in the formula. Here is a 

place where students would be well advised to quote a formula before using it as a very 

common error here was to try and write out an expression for the sum directly, but lose 

marks due to bracketing errors. The answer 
 108 1 4

11 152520.2909
1 4

 
 
 
 





 was common, 

and with no quoted formula gained no marks as the correct method is not implied. 

However, quoting the formula first meant the method could be awarded. 

  



 

Question 10 

In Q10(a) the majority of students scored full marks by differentiating and then attempting 

to solve dy⁄dx=0, often simplifying the quadratic before solving it. The most common 

errors involved losing the last mark for either an incorrect factorisation or for stating an 

incorrect root of dy⁄dx=0, usually 5⁄2, 2⁄5 or −2⁄5. The majority of students who substituted 

x = 1 into dy⁄dx to demonstrate that dy⁄dx=0 did not gain the final mark as they did not 

write a conclusion that this meant that the point was a turning point. 
 

In Q10(b) only a minority of students scored full marks, with the majority struggling to 

identify the correct limits and combination of areas required.  Although there were a few 

students who made no attempt to find y when x = 1, the majority found y = −25 or the 

equation of the line y = 25x − 50 and gained the first B mark. Several also found the 

correct area of the triangle and gained the second B mark. 

 

The majority of students were able to integrate, usually correctly and gain the first M1 

A1 marks.  The most common errors when integrating were to make a slip on one of the 

terms or to differentiate instead. It was more common to see the limits of 2 and −1⁄4 used 

rather than 1 and −1⁄4.  Those who used 1 and −1⁄4 were usually able to get the correct 

answer and gain full marks. Some calculation errors were made in the substitution of −1⁄4 

into the integrated function and many students made errors with subtracting negative 

results.    
 

A common error was to find the area under the whole curve and then subtract the area of 

the triangle. Some students attempted to find the unshaded area by using limits of 2 and 

1 and then subtracting the triangle area and a minority of these students managed to obtain 

a fully correct solution using this method.    

 

For those who subtracted their line equation from the curve equation, most gained the 

M1A1 marks for correct integration of their cubic but again it was common to see 2 and 

−1⁄4 used as limits earning none of the last 3 marks.  Students using this method were 

more likely to make an error even when the method was sound, due to the increased 

number of steps required. 
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