J une 2006
 6663 Core Mathematics C1
 Mark Scheme

Question
Scheme
Marks
number

$$
2 x+\frac{x^{\frac{1}{2}}}{\frac{1}{2}} \quad(+c)
$$

$=2 x^{3}+2 x+2 x^{\frac{1}{2}}$
for some attempt to integrate $x^{n} \rightarrow x^{n+1}$
Total 4 marks
$1^{\text {st }}$ A1 for either $\frac{6}{3} x^{3}$ or $\frac{x^{\frac{1}{2}}}{\frac{1}{2}}$ or better
for all terms in x correct. Allow $2 \sqrt{x}$ and $2 x^{1}$.
for $+c$, when first seen with a changed expression.

Critical Values

$(x \pm a)(x \pm b)$ with $a b=18$ or $x=\frac{7 \pm \sqrt{49--72}}{2}$ or
$\left(x-\frac{7}{2}\right)^{2} \pm\left(\frac{7}{2}\right)^{2}-18$
$(x-9)(x+2) \quad$ or $\quad x=\frac{7 \pm 11}{2} \quad$ or $\quad x=\frac{7}{2} \pm \frac{11}{2}$
Solving Inequality $\quad x>9$ or $x<-2 \quad$ Choosing "outside"
Total 4 marks
For attempting to find critical values.
Factors alone are OK for M1, $x=$ appearing somewhere for the formula and as written for completing the square
$1^{\text {st }} \mathrm{A} 1$ Factors alone are OK. Formula or completing the square need $x=$ as written.
$2^{\text {nd }}$ M1 For choosing outside region. Can f.t. their critical values. They must have two different critical values.
$-2>x>9$ is M1A0 but ignore if it follows a correct version $-2<x<9$ is M0A0 whatever the diagram looks like.
$2^{\text {nd }}$ A1 Use of \geq in final answer gets A0

U shape touching x-axis
B1
$(-3,0)$
B1

B1

Translated parallel to y-axis up ($0,9+k)$
$2^{\text {nd }}$ B1 They can score this even if other intersections with the x axis are given.
$2^{\text {nd }} \mathrm{B} 1 \& 3{ }^{\text {rd }} \mathrm{B} 1$ The -3 and 9 can appear on the sketch as shown M1 Follow their curve in (a) up only. If it is not obvious do not give it. e.g. if it cuts y-axis in (a) but doesn't in (b) then it is M0.
B1f.t. Follow through their 9
(a)

$$
\begin{align*}
& a_{2}=4 \\
& a_{3}=3 \times a_{2}-5=7 \tag{2}
\end{align*}
$$

B1f.t.
(b)
$a_{4}=3 a_{3}-5(=16)$ and $a_{5}=3 a_{4}-5(=43)$
$3+4+7+16+43$
$=73$
A1c.a.o.
$2^{\text {nd }}$ B1f.t. Follow through their a_{2} but it must be a value.
$3 \times 4-5$ is B 0 . Give wherever it is first seen.
$1^{\text {st }}$ M1 For two further attempts to use of $a_{n+1}=3 a_{n}-5$, wherever seen. Condone arithmetic slips
$2^{\text {nd }}$ M1 For attempting to add 5 relevant terms (i.e. terms derived from an attempt to use the recurrence formula) or an expression. Follow through their values for $a_{2}-a_{5}$
Use of formulae for arithmetic series is M0A0 but could get $1^{\text {st }} \mathrm{M} 1$ if a_{4} and a_{5} are correctly attempted.
5.
(a) $\left(y=x^{4}+6 x^{\frac{1}{2}} \Rightarrow y^{\prime}=\right) 4 x^{3}+3 x^{-\frac{1}{2}} \quad$ or $\quad 4 x^{3}+\frac{3}{\sqrt{x}} \quad$ A1

A1
(b) $(x+4)^{2}=x^{2}+8 x+16$
$\frac{(x+4)^{2}}{x}=x+8+16 x^{-1} \quad$ (allow $4+4$ for 8$)$
$\left(y=\frac{(x+4)^{2}}{x} \Rightarrow y^{\prime}=\right) 1-16 x^{-2} \quad$ o.e. M1A
(a) M1 For some attempt to differentiate $x^{n} \rightarrow x^{n-1}$
$1^{\text {st }}$ A1 For one correct term as printed.
$2^{\text {nd }} \mathrm{A} 1$ For both terms correct as printed.

$$
4 x^{3}+3 x^{-\frac{1}{2}}+c \text { scores M1A1A0 }
$$

(b) $1^{\text {st }}$ M1 For attempt to expand $(x+4)^{2}$, must have x^{2}, x, x^{0} terms and at least 2 correct
e.g. $x^{2}+8 x+8$ or $x^{2}+2 x+16$
$1^{\text {st }}$ A1 Correct expression for $\frac{(x+4)^{2}}{x}$. As printed but allow $\frac{16}{x}$ and $8 x^{0}$.
$2^{\text {nd }}$ M1 For some correct differentiation, any term. Can follow through their simplification. N.B. $\frac{x^{2}+8 x+16}{x}$ giving rise to $(2 x+8) / 1$ is M0A0
ALT Product or Quotient rule (If in doubt send to review)
M2 For correct use of product or quotient rule. Apply usual rules on formulae.
$1^{\text {st }}$ A1 For $\frac{2(x+4)}{x}$ or $\frac{2 x(x+4)}{x^{2}}$
$2^{\text {nd }}$ A1 for $-\frac{(x+4)^{2}}{x^{2}}$

Question number	Scheme	Marks
7.		M1 Alc.a.o. M1 A1 M1 A1 A1 Total 7 marks
	$1^{\text {st }} \mathrm{M} 1 \quad$ Use of u_{n} to form a linear equation in a and d. $a+n d=9 \text { is M0A0 }$ $1^{\text {st }} \mathrm{A} 1 \quad$ For $a+10 d=9$. $2^{\text {nd }}$ M1 Use of S_{n} to form an equation for a and d (LHS) or in a (RHS) $2^{\text {nd }}$ A1 A correct equation based on S_{n}. For $1^{\text {st }} 2 \mathrm{Ms}$ they must write n or use $n=11$. $3^{\text {rd }}$ M1 Solving (LHS simultaneously) or (RHS a linear equation in a) Must lead to $a=\ldots$ or $d=\ldots$. and depends on one previous M $3^{\text {rd }} \mathrm{A} 1$ for $a=5$ $4^{\text {th }} \mathrm{A} 1 \quad$ for $d=0.4$ (o.e.) ALT Uses $\frac{(a+l)}{2} \times n=77$ to get $a=5$, gets second and third M1A1 i.e. $4 / 7$ Then uses $\frac{n}{2}[2 a+(n-1) d]=77$ to get d, gets $1^{\text {st }} \mathrm{M} 1 \mathrm{~A} 1$ and $4^{\text {th }} \mathrm{A} 1$ MR Consistent MR of 11 for 9 leading to $a=3, d=0.8$ scores M1A0M1A0M1A1ftA1ft	

(b) M1
For a full method leading to a repeated root $x=\ldots$

Alf.t. \quad For $x=-4(-$ their $p)$

Trial and Improvement

M2 For substituting values of p into the equation and attempting to factorize. (Really need to get to $p=4$ or -1)

A2c.s.o. Achieve $p=4$. Don't give without valid method being seen.

both their 3 and their 5 B1f.t.
(3)
and $(0,0)$ by implication
$0 \quad 3 \quad 5 \quad x$

8
(a) M1 for a correct method to get the factor of $x . \quad x($ as printed is the minimum.
$1^{\text {st }} \mathrm{A} 1$ for $b=-8$ or $c=15$.
-8 comes from -6-2 and must be coefficient of x, and 15 from $6 \times 2+3$
and must have no x.
$2^{\text {nd }} \mathrm{A} 1$ for $a=1, b=-8$ and $c=15$. Must have $x\left(x^{2}-8 x+15\right)$.
(b) M1 for attempt to factorise their 3TQ from part (a).

A1 for all 3 terms correct. They must include the x.
For part (c) they must have at most 2 non-zero roots of their $\mathrm{f}(x)=0$ to

- ft their 3 and their 5 .
(c) $\quad 1^{\text {st }} \mathrm{B} 1 \quad$ for correct shape (i.e. from bottom left to top right and two turning points.)
$2^{\text {nd }}$ B1f.t. for crossing at their 3 or their 5 indicated on graph or in text.
$3^{\text {rd }}$ B1f.t. if graph passes through $(0,0)$ [needn't be marked] and both
their 3 and their 5 .

\square
$2^{\text {nd }}$ M1 for attempting equation of tangent at $(-2,5)$, f.t. their m, based on $\frac{\mathrm{d} y}{\mathrm{~d} x}$.
$2^{\text {nd }}$ A1 \quad o.e. must have a, b and c integers and $=0$.

Treat (a) and (b) together as a batch of 6 marks.

$$
=45
$$

A1 c.a.o. (4)
(a) $\quad 1^{\text {st }}$ M1 for attempting $\frac{y_{1}-y_{2}}{x_{1}-x_{2}}$, must be y over x. No formula condone
one sign slip, but if correct substitution.
$1^{\text {st }} \mathrm{A} 1 \quad$ for a fully correct expression, needn't be simplified.
$2^{\text {nd }}$ M1 for attempting to find equation of l_{1}.
(b) $\quad 1^{\text {st }} \mathrm{M} 1 \quad$ for using the perpendicular gradient rule
$2^{\text {nd }}$ M1 for attempting to find equation of l_{2}. Follow their gradient
provided different.
$3^{\text {rd }}$ M1
for forming a suitable equation to find S.
(c) M1 for expression for $R S$ or $R S^{2}$. Ft their S coordinates
(d) $\quad 1^{\text {st }} \mathrm{M} 1 \quad$ for expression for $P Q$ or $P Q^{2}$.
$P Q^{2}=12^{2}+6^{2}$ is M1 but $P Q=12^{2}+6^{2}$ is M0
Allow one numerical slip.
$2^{\text {nd }}$ dM1 for a full, correct attempt at area of triangle. Dependent on previous M1.

