June 2006 6663 Core Mathematics C1 Mark Scheme

Question	
number	

Scheme

Marks

$$2x + \frac{x^{\frac{1}{2}}}{\frac{1}{2}}$$
 (+c)

$$= 2x^3 + 2x + 2x^{\frac{1}{2}}$$

for some attempt to integrate $x^n \to x^{n+1}$

Total 4 marks

for either
$$\frac{6}{3}x^3$$
 or $\frac{x^{\frac{1}{2}}}{\frac{1}{2}}$ or better

for all terms in x correct. Allow $2\sqrt{x}$ and $2x^1$. for +c, when first seen with a changed expression.

Critical Values

$$(x \pm a)(x \pm b)$$
 with $ab=18$ or $x = \frac{7 \pm \sqrt{49 - 72}}{2}$ or

$$\left(x-\frac{7}{2}\right)^2 \pm \left(\frac{7}{2}\right)^2 - 18$$

$$(x-9)(x+2)$$
 or $x = \frac{7\pm 11}{2}$ or $x = \frac{7}{2} \pm \frac{11}{2}$

Solving Inequality x > 9 or x < -2 Choosing "outside"

Total 4 marks

For attempting to find critical values.

Factors alone are OK for M1, x = appearing somewhere for the formula and as written for completing the square

1st A1 Factors alone are OK. Formula or completing the square need x =as written.

For choosing outside region. Can f.t. their critical values. They must have two different critical values.

-2 > x > 9 is M1A0 but ignore if it follows a correct version -2 < x < 9 is M0A0 whatever the diagram looks like.

 2^{nd} A1 Use of \geq in final answer gets A0

estion number Scheme Marks

U shape touching *x*-axis

В1

$$(-3,0)$$

B1

(3)

Translated parallel to y-axis up

$$(0, 9+k)$$

(2)

Total 5 marks

 2^{nd} B1 They can score this even if other intersections with the x-

axis are given.

2nd B1 & 3rd B1 The -3 and 9 can appear on the sketch as shown

M1 Follow their curve in (a) up only. If it is not obvious do not give it. e.g. if it cuts y-axis in (a) but doesn't in (b) then it is M0.

B1f.t. Follow through their 9

estion number	Scheme	Marks	
(a)	$a_2 = 4$	D1.0	(2)
	$a_3 = 3 \times a_2 - 5 = 7$	B1f.t.	(2)
(b)	$a_4 = 3a_3 - 5(=16)$ and $a_5 = 3a_4 - 5(=43)$		
	3+4+7+16+43		
	= 73	Alc.a.o.	(3)
		Total 5 r	narks

 2^{nd} B1f.t. Follow through their a_2 but it must be a value. $3 \times 4 - 5$ is B0. Give wherever it is first seen. For two further attempts to use of $a_{n+1} = 3a_n - 5$, wherever seen. Condone arithmetic slips 2^{nd} M1 For attempting to add 5 relevant terms (i.e. terms derived from an attempt to use the recurrence formula) or an expression. Follow through their values for $a_2 - a_5$

Use of formulae for arithmetic series is M0A0 but could get 1^{st} M1 if a_4 and a_5 are correctly attempted.

Question number	Schen	Mar	·ks		
5. (a	$(y = x^4 + 6x^{\frac{1}{2}} \Rightarrow y' =) 4x^3 + 3x^{-\frac{1}{2}}$	or	$4x^3 + \frac{3}{\sqrt{x}}$.A1	(3)
(b	$(x+4)^2 = x^2 + 8x + 16$		• •		
	$\frac{(x+4)^2}{x} = x + 8 + 16x^{-1}$		(allow 4+4 for 8)		
	$(y = \frac{(x+4)^2}{x} \Rightarrow y' =) 1 - 16x^{-2}$	o.e.		M1A1	(4)
				Total 7	marks

- (a) M1 For some attempt to differentiate $x^n \to x^{n-1}$ 1^{st} A1 For one correct term as printed. 2^{nd} A1 For both terms correct as printed. $4x^3 + 3x^{-\frac{1}{2}} + c$ scores M1A1A0
- (b) 1^{st} M1 For attempt to expand $(x+4)^2$, must have x^2 , x, x^0 terms and at least 2 correct e.g. $x^2 + 8x + 8$ or $x^2 + 2x + 16$ 1^{st} A1 Correct expression for $\frac{(x+4)^2}{x}$. As printed but allow $\frac{16}{x}$ and $8x^0$. 2^{nd} M1 For some correct differentiation, any term. Can follow through their simplification. N.B. $\frac{x^2 + 8x + 16}{x}$ giving rise to

(2x + 8)/1 is M0A0

ALT Product or Quotient rule (If in doubt send to review)

M2 For correct use of product or quotient rule. Apply usual rules on formulae.

1st A1 For
$$\frac{2(x+4)}{x}$$
 or $\frac{2x(x+4)}{x^2}$
2nd A1 for $-\frac{(x+4)^2}{x^2}$

Question number	Scheme	Mark	ΚS
	$16 + 4\sqrt{3} - 4\sqrt{3} - (\sqrt{3})^{2} \text{or} 16 - 3$ = 13	M1 A1c.a.o	(2)
(b)	$\frac{2}{4+\sqrt{3}} \times \frac{\sqrt{3}}{4-\sqrt{3}}$	M1	
	$= \frac{26(4-\sqrt{3})}{13} = \frac{8-2\sqrt{3}}{13} \text{or} 8+(-2)\sqrt{3} \text{or} a=8$ and $b=-2$	A1	(2)
		Total 4	marks
(a) (b)	M1 For 4 terms, at least 3 correct e.g. $8 + 4\sqrt{3} - 4\sqrt{3} - (\sqrt{3})^2$ or $16 \pm 8\sqrt{3} - (\sqrt{3})^2$ or $16 + 3$ 4^2 instead of 16 is OK $(4 + \sqrt{3})(4 + \sqrt{3})$ scores M0A0 M1 For a correct attempt to rationalise the denominator can be implied		
	implied $NB = \frac{-4 + \sqrt{3}}{-4 + \sqrt{3}} \text{ is OK}$		

Question number	Scheme	Marks
7.	a + (n-1)d = k	M1 A1c.a.o.
	$\frac{n}{2}[2a + (n-1)d] = 77$ or $\frac{(a+l)}{2} \times n = 77$ $l = 9$ or 11	M1
	$(S_{11} =) \frac{11}{2}(2a+10d) = 77$ or $\frac{(a+9)}{2} \times 11 = 77$	A1
	e.g. $a + 10d = 9$	
	a + 5d = 7 or $a + 9 = 14$	M1
	a = 5 and $d = 0.4$ or exact equivalent	A1 A1 Total 7 marks
	1 st M1 Use of u_n to form a linear equation in a and d . $a + nd = 9 \text{ is } M0A0$ 1 st A1 For $a + 10d = 9$.	
	2^{nd} M1 Use of S_n to form an equation for a and d (LHS) or in a (RHS) 2^{nd} A1 A correct equation based on S_n .	
	For 1^{st} 2 Ms they must write n or use $n = 11$. 3^{rd} M1 Solving (LHS simultaneously) or (RHS a linear equation	
	in a)	
	Must lead to $a = \dots$ or $d = \dots$ and depends on one previous M 3^{rd} A1 for $a = 5$ 4^{th} A1 for $d = 0.4$ (o.e.)	
	ALT Uses $\frac{(a+l)}{2} \times n = 77$ to get $a = 5$, gets second and third	
	M1A1 i.e. 4/7	
	Then uses $\frac{n}{2}[2a + (n-1)d] = 77$ to get d, gets 1 st M1A1 and 4 th A1	
	MR Consistent MR of 11 for 9 leading to $a = 3$, $d = 0.8$ scores M1A0M1A0M1A1ftA1ft	

Question number	Marks	Scheme			
8. (a)	$b^2 - 4ac = 4p^2 - 4(3p+4) = 4p^2 - 12p - 16 (=0)$				
	M1, A1				
	or $(x+p)^{2}$	$-p^2 + (3p+4) = 0 \implies p^2 - 3p - 4(=0)$			
	(p-4)(p +	1)=0			
	M1				
		p = (-1 or) 4			
	A1c.s.o. (4)				
(b)	$x = \frac{-b}{2a}$ or	$(x+p)(x+p) = 0 \implies x = \dots$			
	M1				
		$x (= -p) = \underline{-4}$			
	A1f.t. (2)				
		6			
(a)	1 st M1	For use of $b^2 - 4ac$ or a full attempt to complete the square			
leadin	g to a 3TQ in p	9.			
		May use $b^2 = 4ac$. One of b or c must be correct.			
	1 st A1	For a correct 3TQ in p . Condone missing "=0" but all 3 terms			
must ł	e on one side				
	2 nd M1	For attempt to solve their 3TQ leading to $p =$			
	2 nd A1	For $p = 4$ (ignore $p = -1$).			
		$b^2 = 4ac$ leading to $p^2 = 4(3p + 4)$ and then "spotting" $p = 4$			
scores	4/4.				

For a full method leading to a repeated root $x = \dots$

For x = -4 (- their p)

(b)

M1

A1f.t.

Trial and Improvement

M2 For substituting values of *p* into the equation and attempting to factorize.

(Really need to get to p = 4 or -1)

A2c.s.o. Achieve p = 4. Don't give without valid method being seen.

Question number	Scheme Marks	
9. (a)	$f(x) = x[(x-6)(x-2)+3]$ or $x^3 - 6x^2 - 2x^2 + 12x + 3x = x($	
	M1	
	$f(x) = x(x^2 - 8x + 15)$ $b = -8 \text{ or } c = 15$	
	A1	
	both and a	
= 1	A1 (3)	
(b)	$(x^2 - 8x + 15) = (x - 5)(x - 3)$	
	M1	
	f(x) = x(x-5)(x-3)	
	A1 (2)	
(c)		
	Shape	
	B1	
	their 3 or their 5 B1f.t.	

both their 3 and their 5 B1f.t. (3) and (0,0) by

implication

0 3 5 x

8

(a) M1 for a correct method to get the factor of x. x(as printed is the minimum.

 1^{st} A1 for b = -8 or c = 15.

-8 comes from -6-2 and must be coefficient of x, and 15 from 6x2+3 and must have no xs.

 2^{nd} A1 for a = 1, b = -8 and c = 15. Must have $x(x^2 - 8x + 15)$.

(b) M1 for attempt to factorise their 3TQ from part (a).

A1 for all 3 terms correct. They must include the x.

For part (c) they must have at most 2 non-zero roots of their f(x) = 0 to

ft their 3 and their 5.

(c) 1st B1 for correct shape (i.e. from bottom left to top right and two turning points.)

2nd B1f.t. for crossing at their 3 or their 5 indicated on graph or in text.

 3^{rd} B1f.t. if graph passes through (0, 0) [needn't be marked] and both their 3 and their 5.

Question		Scheme	
number	Marks		
10.(a)	$f(x) = \frac{2x^2}{2} + \frac{3}{2}$	$\frac{3x^{-1}}{-1}(+c) \qquad \qquad -\frac{3}{x} \text{ is OK}$	
1/3		$\frac{15}{2} = 9 - \frac{3}{3} + c$ $c = -\frac{1}{2}$ (5)	
(b)	$f(-2) = 4 + \frac{3}{2}$ B1c.s.o.		
(c)	$m = -4 + \frac{3}{4},$ M1,A1 Equation of ta M1 $\frac{4y + 13x + 6 = 0}{A1}$ A1 (4)	angent is: $y - 5 = -3.25(x + 2)$	
(a)	1 st M1 1 st A1 2 nd M1 se some correct	for some attempt to integrate $x^n \to x^{n+1}$ for both x terms as printed or better. Ignore (+ c) here. for use of $(3, 7\frac{1}{2})$ or (-2, 5) to form an equation for c . There substitution. No + c is M0. Some changes in x	
	of function nee 2 nd A1f.t.		
(b) f(3)=7	B1cso 5.5.	If $(-2, 5)$ is used to find c in (a) B0 here unless they verify	
(c)	1 st M1 1 st A1	for attempting $m = f'(\pm 2)$ for $-\frac{13}{4}$ or -3.25	

 2^{nd} M1 for attempting equation of tangent at (-2, 5), f.t. their *m*, based on $\frac{dy}{dx}$.

 2^{nd} A1 o.e. must have a, b and c integers and = 0.

Treat (a) and (b) together as a batch of 6 marks.

Question	Scheme Marks	
number	IVIAIRS	
11.(a)	$m = \frac{8-2}{11+1} (=\frac{1}{2})$ M1 A1	
	$y-2 = \frac{1}{2}(x-1)$ or $y-8 = \frac{1}{2}(x-11)$ o.e.	
	M1 $y = \frac{1}{2}x + \frac{5}{2}$ accept exact equivalents	
$e.g.\frac{6}{12}$	$y = \frac{1}{2}x + \frac{5}{2}$ accept exact equivalents $A1c.a.o. \qquad (4)$	
(b)	Gradient of $l_2 = -2$	
	M1 Equation of l_2 : $y - 0 = -2(x - 10)$ [$y = -2x + 20$]	
	M1 $\frac{1}{2}x + \frac{5}{2} = -2x + 20$	
	M1	
Ms	$x = 7 \text{ and } y = 6$ $A1, A1 \qquad (5)$ depend on all 3	
(c)	$RS^{2} = (10-7)^{2} + (0-6)^{2} (= 3^{2} + 6^{2})$ M1 $RS = \sqrt{45} = 3\sqrt{5} (*)$ A1c.s.o. (2)	
(d)	$PQ = \sqrt{12^2 + 6^2}$, = $6\sqrt{5}$ or $\sqrt{180}$ or $PS = 4\sqrt{5}$ and $SQ = 2\sqrt{5}$ M1,A1 Area = $\frac{1}{2}PQ \times RS = \frac{1}{2}6\sqrt{5} \times 3\sqrt{5}$	
	dM1	

A1 c.a.o. (4)

15

(a)	1 st M1	for attempting $\frac{y_1 - y_2}{x_1 - x_2}$, must be y over x. No formula condone
one sig	gn slip, but if	formula is quoted then there must be some
correc	t substitution.	
	1 st A1	for a fully correct expression, needn't be simplified.
	2 nd M1	for attempting to find equation of l_1 .
(b)	1 st M1	for using the perpendicular gradient rule
	$2^{nd} M1$	for attempting to find equation of l_2 . Follow their gradient
provid	led different.	
1	3 rd M1	for forming a suitable equation to find S.
(c)	M1	for expression for RS or RS^2 . Ft their S coordinates
(d)	1 st M1	for expression for PQ or PQ^2 .
$PQ^2 =$	$=12^2+6^2$ is M1	but $PQ = 12^2 + 6^2$ is M0
		Allow one numerical slip.
	$2^{nd} dM1$	for a full, correct attempt at area of triangle. Dependent on
previo	us M1.	