une 2005 6663 Core Mathematics C1
 Mark Scheme

\begin{tabular}{|c|c|c|}
\hline Question Number \& Scheme \& Marks \\
\hline 3. (a) \& \[
\begin{array}{rr}
\hline x^{2}-8 x-29 \equiv(x-4)^{2}-45 \& (x \pm 4)^{2} \\
(x-4)^{2}-16+(-29) \\
(x \pm 4)^{2}-45
\end{array}
\] \& \begin{tabular}{l}
M1 \\
A1 \\
A1
(3)
\end{tabular} \\
\hline ALT \& \begin{tabular}{ccc}
Compare coefficients \& \(-8=2 a\) \\
\(a=-4 \underline{\text { AND }}\)\begin{tabular}{rl}
\(a^{2}+b\) \& \(=-29\) \\
\(b=-45\)
\end{tabular} \& equation for \(a\) \\
\&
\end{tabular} \& \begin{tabular}{l}
M1 \\
A1 \\
A1 \\
(3)
\end{tabular} \\
\hline (b) \& \begin{tabular}{l}
\[
\begin{aligned}
\& (x-4)^{2}=45 \\
\& \Rightarrow x-4= \pm \sqrt{45} \\
\& x=4 \pm 3 \sqrt{5}
\end{aligned}
\] \\
(follow through their \(a\) and \(b\) from (a))
\[
\begin{gathered}
c=4 \\
d=3(\pm \mathrm{OK})
\end{gathered}
\]
\end{tabular} \& \begin{tabular}{l}
M1 \\
A1 \\
A1 \\
(3) \\
(6)
\end{tabular} \\
\hline (a)

(b) \& | M1 for $(x \pm 4)^{2}$ or an equation for a (allow sign error ± 4 or ± 8 on ALT) 1stA1 for $(x-4)^{2}-16(-29)$ can ignore -29 or for stating $a=-4$ and an equation for b $2^{\text {nd }} \mathrm{A} 1$ for $b=-45$ |
| :--- |
| Note M1A0 A1 is possible for $(x+4)^{2}-45$ |
| N.B. On EPEN these marks are called B1M1A1 but apply them as M1A1A1 |
| M1 for a full method leading to $x-4=\ldots$ or $x=\ldots$ (condone $x-4=\sqrt{-n}$) |
| N.B. $(x-4)^{2}-45=0$ leading to $(x-4) \pm \sqrt{45}=0$ is M0A0A0 |
| A1 for c and A1 for d |
| N.B. M1 and A1 for c do not need \pm (so this is a special case for the formula method) but \pm must be present for the d mark) |
| Note Use of formula that ends with $\frac{8 \pm 6 \sqrt{5}}{2}$ scores M1 A1 A0 (but must be $\sqrt{5}$) i.e. only penalise non-integers by one mark. | \&

\hline
\end{tabular}

| Question |
| ---: | ---: | ---: | ---: |
| Number | (a)

Question Number	Scheme	Marks
7. (a)	$\begin{aligned} & (3-\sqrt{x})^{2}=9-6 \sqrt{x}+x \\ & \div b y \sqrt{x} \quad \rightarrow 9 x^{-\frac{1}{2}}-6+x^{\frac{1}{2}} \\ & \int\left(9 x^{-\frac{1}{2}}-6+x^{\frac{1}{2}}\right) d x=\frac{9 x^{\frac{1}{2}}}{\frac{1}{2}}-6 x+\frac{x^{\frac{3}{2}}}{\frac{3}{2}}(+c) \\ & \text { use } y=\frac{2}{3} \text { and } x=1: \quad \frac{2}{3}=18-6+\frac{2}{3}+c \\ & \text { So } \\ & \qquad y=18 x^{\frac{1}{2}}-6 x+\frac{2}{3} x^{\frac{3}{2}}-12 \end{aligned}$ M1 Attempt to multiply out $(3-\sqrt{x})^{2}$. Must have 3 or 4 terms, allow one sign error A1 cso Fully correct solution to printed answer. Penalise invisible brackets or wrong working $1^{\text {st }}$ M1 Some correct integration: $\quad x^{n} \rightarrow x^{n+1}$ A1 At least 2 correct unsimplified terms Ignore + c A2 All 3 terms correct (unsimplified) $2^{\text {nd }}$ M1 Use of $y=\frac{2}{3}$ and $x=1$ to find c. No $+c$ is M0. A1c.s.o. for -12 . (o.e.) Award this mark if " $c=-12$ " stated i.e. not as part of an expression for y A1f.t. for 3 simplified x terms with $y=\ldots$ and a numerical value for c. Follow through their value of c but it must be a number.	M1 A1 c.s.o. (2) M1 A2/1/0 M1 A1 c.s..o. A1f.t. (6) (8)
Question	Scheme	Marks

