

Examiners' Report June 2016

GCE Chemistry 8CH0 01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>.

Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Giving you insight to inform next steps

ResultsPlus is Pearson's free online service giving instant and detailed analysis of your students' exam results.

- See students' scores for every exam question.
- Understand how your students' performance compares with class and national averages.
- Identify potential topics, skills and types of question where students may need to develop their learning further.

For more information on ResultsPlus, or to log in, visit <u>www.edexcel.com/resultsplus</u>. Your exams officer will be able to set up your ResultsPlus account in minutes via Edexcel Online.

Pearson: helping people progress, everywhere

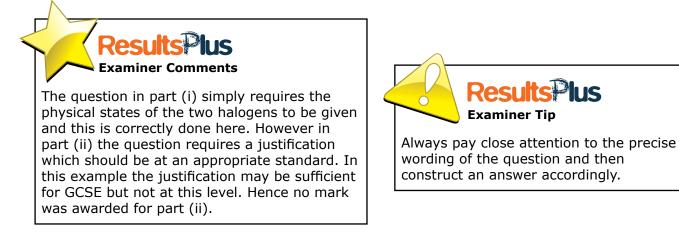
Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk.

June 2016

Publications Code 8CH0_01_1606_ER

All the material in this publication is copyright © Pearson Education Ltd 2016

Introduction


The general performance of candidates across the whole paper was pleasing and many questions proved to be very effective discriminators providing opportunities for candidates of all abilities to demonstrate their knowledge and understanding.

The following clips of candidate responses and the associated comments/tips serve as useful aids in highlighting key areas for improvement and vital pointers in avoiding common errors in answering such questions.

Question 1 (a)

This proved to be an effective opening question because it proved accessible to all candidates, but provided some differentiation as less able candidates tended to score one mark while more able candidates often scored two marks.

- 1 This question is about Group 7 elements and their compounds.
- (a) (i) Give the physical states of chlorine and iodine at room temperature and pressure.
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)

- 1 This question is about, Group 7 elements and their compounds.
 - (a) (i) Give the physical states of chlorine and iodine at room temperature and pressure.

(1) Chlorine is a gas and iodune US a solid (ii) Predict the physical state of astatine under these conditions. Justify your answer. (1)preduct it would also be a unco would solid reach as it is very form a like shuch ce lath London forces SNO dees as the down growf Examiner The answer given in this response for part (ii) is clearly of a much higher standard than the previous one and correctly refers to the strength of the London forces as the justification for the solid state of astatine.

Question 1 (b)

This proved to be a clear 'step up' in difficulty from part (a) since only the more able candidates could consistently score on this question. The mark for the type of reaction was the most common mark awarded. It was noticeable that the equations written were balanced which has been an issue raised in previous specifications, however the chemistry of the substances involved is also an important point to consider and this appeared to be lacking in many responses.

(b) Write the equation for the reaction of chlorine with cold, dilute sodium hydroxide solution to form bleach. Name this type of reaction.

(2)

Disproportionation reaction. Type of reaction $Cl_{2cap} + NaO(H_{cap})$	
Results is important but the chemical nature of the products appears to have been missed. An acid would not be made in the presence of an alkali.	Results File Examiner Tip Candidates are best-advised to formulate their answer according to any 'scaffolding' given in the question. It is vital to remember the chemical nature of the substances in a chemical equation since this will help to write the correct products.

(b) Write the equation for the reaction of chlorine with cold, dilute sodium hydroxide solution to form bleach. Name this type of reaction.

(2)

2 cl+2 NaOH -> Nacl+ Naoch + H2O

Type of reaction disproportionation

but with the correct products. However the reactant chlorine is a diatomic molecule and not single atoms. Hence only the mark for the type of reaction was awarded.

from GCSE must be retained. The most challenging part of this question is the formulation of the products. To get these right, but then make the simple error in the formula of the chlorine is disappointing. The formula of chlorine would have been learnt in GCSE and this is needed as a foundation to build on with more complex chemistry.

Question 1 (d)

The most surprising, and disappointing, aspect of this question was that a significant minority of candidates clearly did not read the question but just focused on the chemical formula of the substance. This was evidently the case because some candidates wrote about carbon and iodine with fluorine but the name of the substance, chlorine trifluoride, was clearly and purposely given in the question instruction.

In addition the word 'bonds' was emboldened because there was no credit for comments on the overall polarity of the chlorine trifluoride molecule. This point was also missed by a large number of candidates.

Less able candidates were often able to gain the mark for the definition of electronegativity but no more. The second mark for the greater electronegativity of the fluorine in comparison to the chlorine proved accessible to many, and the third mark for the correct dipoles seemed to be only awarded to the very able candidates. In this way the question served as an excellent discriminator.

(3)

It would be useful for candidates to practice the use of provided data to support their explanations.

(d) State what is meant by the term electronegativity and hence explain the polarity, if any, of the **bonds** in chlorine trifluoride, CIF_3 .

Electronegativity is the ability of an atom in a molecule to othact a pair of e in a covalent bond, however there are is no polarity for chlorine trif woride as the dipolel cancel out. **Examiner Comments** Examiner Tip The definition of electronegativity is nicely expressed and worthy of one mark. Candidates must make time to re-read their answers and to re-read the question The identity of the dipoles in chlorine trifluoride to make sure that the two match. is not stated, nor any reason for them. Thus no

further credit was given for this response.

(d) State what is meant by the term electronegativity and hence explain the polarity, if any, of the **bonds** in chlorine trifluoride, CIF₃.

	(3)
Bechonegativity is an atom's a	bility to attract electrons to itself
in a covalent bond. The Cl	- F bonds will be slightly polar,
	ronegative than chlorine, so
will have a 5- charge.	~
et floome has an electronegativ	ity index of 4.0 whereas
Chlorine is 3.0.	-
ResultsPlus	
This response scored two of the three marks available. The third mark is almost given	Results Plus
but only the dipole on the fluorine has been stated. There were responses seen where both fluorine and chlorine were given delta negative dipoles and so the absence of	Candidates must make sure that all aspects of their answer clearly and explicitly state the necessary points. The examiner is not in a

negative dipoles and so the absence of the dipole on the chlorine, as in this case, cannot be taken to be that the chlorine is delta positive. This has to be clearly stated.

position to infer what the candidate means.

Question 2 (a)

This proved to be a high-scoring question, with a mean of over 1.7. It was pleasing that candidates were able to identify and to correct a number of errors in the excerpt which demonstrates a good level of understanding of this topic area. The most common correct response, not unsurprisingly, was the statement that electrons are found in the nucleus. Occasionally an incorrect comment to the effect that the isotopes had 18 or 20 electrons in the shells was seen.

Trot em "Some of the electrons are also contained in the nucleus, whilst the remainder are arranged in ring revolving round the nucleus The two isotopes [of chlorine] have therefore 18 and 20 electrons respectively in the nucleus and 17 [electrons] external to it." (a) Identify and correct two errors in the excerpt. (2)No elections are found in the nucleus ty one all fend question shelve avoid he nucleus. The elections do set revore anus Caled Orbitals 6 line Over Resi **Examiner Tip Examiner Comments** It can often be a helpful practice when constructing An example of a good response an answer for key parts in the question to be which scores both marks. highlighted or 'ringed' as in this instance.

Question 2 (c)(i)

Another high-scoring question on a topic that candidates had clearly learnt very well.

(c) (i) State what is meant by the term relative atomic mass. (2) atomic mass mass 14 mess at 1 Carbon-12. ates **Results**Plus **Examiner Comments** This is an example of a response where the point **Examiner Tip** about the relative atomic mass being a mean or Definitions are well-worth learning an average (of the isotopes) is missing and so thoroughly as they tend to be only scores one mark for the comment about the easier marks to obtain. reference standard, one twelfth of carbon-12. (c) (i) State what is meant by the term **relative atomic mass**. (2)

mass of an atom compared of carbon 1112 **Examiner Comments** Resu 211 The second half of this response appears **Examiner Tip** to have been rushed and so the point Careful checking of written answers about the reference being a twelfth of often identifies errors that can be carbon-12 has been merged into one corrected relatively easily. incorrect comment. However the opening

comment did gain one mark.

Question 2 (c)(ii)

This relative atomic mass calculation was accessible to the vast majority of candidates with a good spread of marks across the whole ability range. The advice given on the front of the exam paper is that all working in calculations should be shown and this was true in this instance.

This was the first question on the paper where the new style of wording such that the answer be quoted to "an appropriate number of significant figures" was used. The vast majority of candidates responded correctly and did not give an answer to an excessive number of significant figures.

However a small minority of candidates ignored the more precise values for the two isotopes and simply used 6 and 7. This error was penalised by one mark.

It was also disappointing at times to see candidates give a final answer which was not between 6 and 7. Evidently these candidates had 'lost sight' of the subject of the question and surely would have benefitted from a careful review of their answer.

(ii) A <u>5.000 g</u> sample of lithium, containing the two isotopes lithium-6 and lithium-7, was found to contain <u>0.460 g</u> of the isotope lithium-6.

Calculate the relative atomic mass of lithium for this sample. Give your answer to an appropriate number of significant figures.

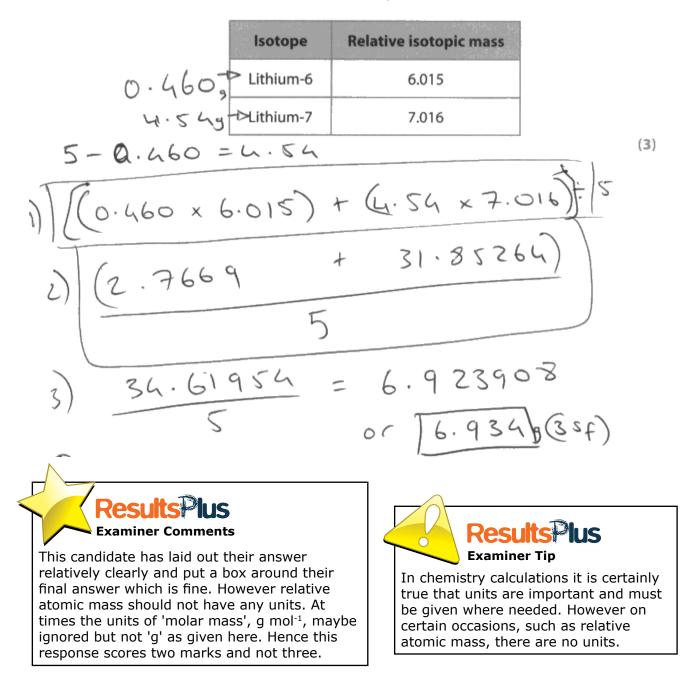
Isotope	Relative isotopic mass
Lithium-6	6.015
Lithium-7	7.016

$$Av = (6.015 \times 9.2) + (7.016 \times 90.8) \quad 0.460 \times 100$$

=6.923

Results Plus Examiner Comments

Incorrect rounding within a calculation will be penalised as this is in harmony with the increased mathematical demand of the new specification. In this response the initial answer given is 6.923 but this is incorrect and so was penalised, even though the final answer of 6.92 is the correct mark scheme answer. This may lead some to feel that working should not be shown but this example is an unusual one and for the vast majority of responses the working shown helped to award maximum credit for the answer given.



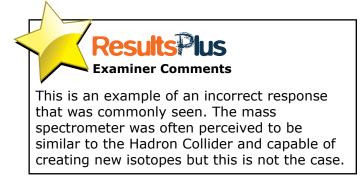
= 9.2%

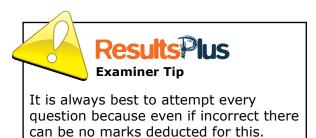
(3)

Significant figures is an integral part of the new specification and the number quoted should not be given to more significant figures than the data provided. (ii) A 5.000 g sample of lithium, containing the two isotopes lithium-6 and lithium-7, was found to contain 0.460 g of the isotope lithium-6.

Calculate the relative atomic mass of lithium for this sample. Give your answer to an appropriate number of significant figures.

Question 2 (d)


This was a highly-discriminating question, with only the very able candidates scoring any marks. The question was an application of the specification Topic 1.9 and candidates at the 'top end' will have their knowledge and understanding stretched. It was pleasing to see that these candidates were often able to explain the origin of a small mass spectrum peak at m/z = 80.


One fairly frequently-seen error was one that referred to the presence of carbon-13, but this was a pure sample of bromine so an unfortunate complete loss of grasp of the question.

(d) A mass spectrometer was used to analyse a sample of bromine, Br₂, with only the ⁷⁹Br and ⁸¹Br isotopes present.

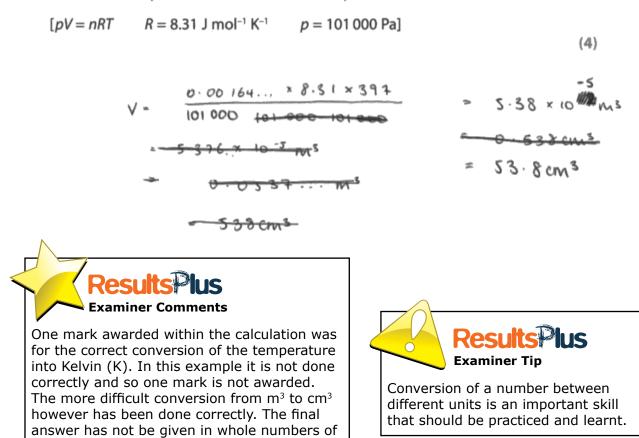
Explain why a very small peak occurs at m/z = 80.

ring ionisation Brz gets hit with so much force

(2)

(d) A mass spectrometer was used to analyse a sample of bromine, Br₂, with only the ⁷⁹Br and ⁸¹Br isotopes present.

Explain why a very small peak occurs at m/z = 80.


As Br, is diatomic a ⁷⁹Br and ⁸¹Br could have bonded together to form Br, with neuer mass of 160. However in the mass spectrometer, MASA it formed a +2 ion giving it a mass to charge density of 160 = 80 Results **Examiner Comments** An example of an excellent answer which clearly explains both points required and scores two marks.

Question 3 (a)(iii)

Candidates had been well-prepared for this type of calculation which is new to this specification and it was pleasing to see the way that a large number of candidates laid out their answers, although this was not uniformly the case. The use of 'signposting' to indicate the steps in a calculation is to be encouraged.

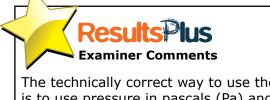
The point that was missed by the vast majority of candidates was the reference in the question to "produced in each of these experiments" and the precision of the volumes given in the results table. This phrase was meant to direct the candidates to reflect on the apparatus given in the diagram and thus the precision of the volume that could be determined from this apparatus. Sadly this aspect was not appreciated by most and so answers such as 40.3 cm³ were frequently seen.

This specification does not have chemistry coursework and so assessment of understanding of apparatus and practical procedures has to be a part of the examination papers.

cm³ but otherwise the calculation is correct

and so two marks were awarded.

(iii) Calculate, using the Ideal Gas Equation, the volume of hydrogen gas, in **cm**³, that should be produced in each of these experiments.


(iii) Calculate, using the ideal Gas Equation, the volume of hydrogen gas, in cm² that should be produced in each of these experiments.

$$[pV = nRT \quad R = 8.31 \text{ J mol}^{-1} \text{ K}^{-1} \quad p = 101\,000 \text{ Pa}].$$

$$V = \frac{nRT}{P} \qquad \underbrace{0.00165 \times 8.31 \times 297\kappa}_{101 \text{ kPa}} \qquad (4)$$

X1000 = 40.31995545

= 40.32 cm3

The technically correct way to use the ideal gas equation is to use pressure in pascals (Pa) and not kilopascals (kPa) to obtain an answer in m³ and then to multiply by 10⁶ to obtain an answer in cm³. However the correct final answer can be obtained from dividing by the number of kPa and then multiplying by 10³ as seen here. The final answer has not been given as a whole number readable by the 250 cm³ measuring cylinder and so the response was awarded three marks out of four.

Question 3 (a)(i-ii)

These were straight-forward molar calculations which were more akin to the legacy exam papers, but are still within the scope of the new specification in order to enable lower-ability candidates to gain some credit on this type of question. The majority of candidates scored both marks, with even the candidates at the E boundary having a mean of 1.36.

Candidates are advised not to present their final answer as a fraction because of the issue of significant figures. In this particular instance this was not a concern but the practice should not be encouraged.

		Experiment 1	Experiment 2	Experiment 3
Mass of magnesium / g		0.04	0.04	0.04
Volume of hydrogen gas	/ cm³	31	25	32
The equation for the reaction	is	PIS MIN	n by Cofy	
Mg	J(s) + 2	$2HCl(aq) \rightarrow MgC$	$I_2(aq) + H_2(g)$	

(a) (i) Calculate the number of moles of magnesium used by the student in each experiment.

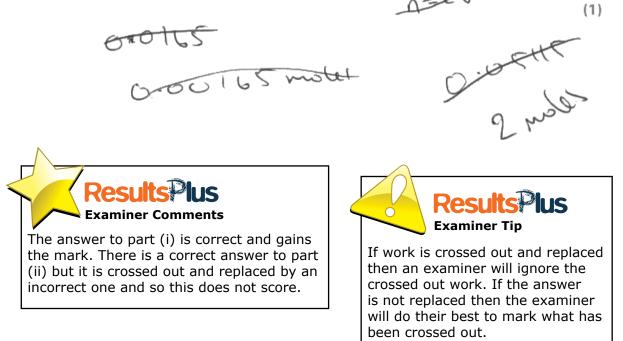
$$n = \frac{MS}{M} = \frac{0.04}{24.3} = 1.64 \times 10^{3}$$
(1)

(ii) Use your answer from part (a)(i) to deduce the number of moles of hydrogen gas that should be produced.

(1)

for all of a useful

	Experiment 1	Experiment 2	Experiment 3
Mass of magnesium / g	0.04	0.04	0.04
Volume of hydrogen gas / cm ³	31	25	32


The equation for the reaction is

 $Mg(s) + 2HCl(aq) \rightarrow MgCl_2(aq) + H_2(g)$

(a) (i) Calculate the number of moles of magnesium used by the student in each experiment.

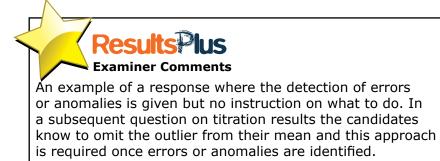
$$n = \frac{0.04}{mr} = 0.00165 moler$$
⁽¹⁾

 (ii) Use your answer from part (a)(i) to deduce the number of moles of hydrogen gas that should be produced.

Question 3 (b)

There was considerable confusion in candidates' answers between reliability and accuracy. In addition it was common to see answers that referred to the identification of erroneous results but then did not give a reason or explanation for what should be done with them. In addition repetition does not make the results more precise but rather it allows imprecise results to be identified and then discarded.

At GCSE the use of terminology in scientific investigations is clearly defined and so at this level candidates should continue with this practice. The commonly used illustration of arrows on a target board is a helpful way to explain these points to candidates.


(b) Give a reason why the student repeated the experiment three times.

(1)quiment, improves the allowing of rebulls.

(b) Give a reason why the student repeated the experiment three times.

(1)To detect anomolies ance

Question 3 (c)

The question proved to be a good discriminator and tested the candidates understanding of chemistry in a practical setting. This is certainly an area that centres can focus on with their candidates.

The question asked for three reasons and three changes but candidates often just seemed to write everything that they could without structuring their answer appropriately. A number of neutral points were ignored such as any reference to change in temperature or the need to measure the length of magnesium more accurately. However incorrect chemistry was penalised, such as references to "not all of the magnesium reacting" because the question clearly stated that the hydrochloric acid was in excess.

There were four different issues and their associated improvements that were awarded credit and so candidates had ample opportunity to gain credit. The most common correct response seen involved reference to the 'loss of gas' which would have occurred but the improvement frequently suggested was just to 'use a gas syringe' but the replacement of a measuring cylinder with a gas syringe would not be a suitable improvement. The candidates needed to refer to the use of a sealed apparatus such as a conical flask that was then connected to the gas syringe. The size of the measuring cylinder was also often mentioned but the large graduations resulting in an inaccurate reading was poorly expressed.

(c) Give three reasons for the difference between your calculated value in (a)(iii) and the actual volumes of hydrogen gas obtained by the student.

For each reason, identify a change to either the apparatus or the chemicals that could be made by the student to improve the result.

(6)

The magnesium ribbon may have been oxidised by exposure to the air.
To prevent this, the magnesium should be stored in an airhight container
before use.
The apparatus is entirely closed off, so the production of gas may have
increased the pressure. A gas cylinder should be used to enjure
the volume of gas measured was accurate.
A very small mass of magnesium was used, increasing the percentage
uncertainty in the measurement of its mass. A larger mass of magnelism
Should be used to prevent this.

Results Plus

This is an example of one of the more ably laid-out responses seen with an attempt clearly made to give three reasons and three changes. The first issue of the oxidation of magnesium is a correct one but the improvement suggested is incorrect. Likely the candidate is thinking of the storage of sodium metal but this is not suitable here. The magnesium ribbon is cleaned with 'rough' paper of some description. The second issue is incorrect as pressure is not a concern. The third issue of the small mass is correct and the improvement is also suitable. Hence this response scored three marks.

Question 4 (d)

A useful discriminatory question with the grade A candidates scoring both marks but only the better of the less able candidates able to score one mark. The observation mark required both the colour and state. The mark for the identity of the solutions proved the more challenging and both solutions had to be correct for the one mark to be awarded.

(d) Two of the solutions produce the same result on the addition of dilute nitric acid followed by silver nitrate solution.

State the observation with this test and the **two** solutions that give this result.

Observation	white	1000.00		formed.
Solutions	HC1 -	-na poro	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	chieride
The observa of the soluti either name	esuits Plus miner Comments ition is correct. Th ons are also corre s or formulae, or vere acceptable.	ect as	in the que However given for correct of	Results Plus Examiner Tip me or formula is not explicitly asked estion then either will be acceptable. if both the name and formula are one substance then both must be therwise it will be a case of the response negating the correct one.

(2)

Question 4 (e)

Part (e) proved to be much harder for candidates to get right than part (d) with even the candidates at the grade A boundary scoring a mean of about 1.5 out of 2.

The ionic equation, as usual, was a key discriminator with only the more able candidates able to select the correct species and to produce a balanced equation.

(e) The hydrochloric acid and the sodium carbonate solution react together. State an observation you would make and write the **ionic** equation for the reaction. State symbols are not required.

(2)Observation CO2 given off SO it fizzes lonic equation 7 CUGOR $H(1 + Na(0_3))$ **Results**Plus **Examiner Tip Examiner Comments** The observation mark was awarded Carbon dioxide, oxygen or hydrogen gas are not for the reference to "it fizzes". observed and so the comment that "CO₂ given off" does not gain any credit. A suitable observation is Nothing else was creditworthy. bubbles, fizzing or effervescence. (2) ffervesous Observation . lonic equation ---> CO2 + H2O 2H**Examiner Comments** The spelling "effervesons" is incorrect but unambiguous and so the mark for the observation was awarded. Unfortunately this candidate has not checked the balancing of the equation by charge and so the second mark was not given.

Question 5 (a)

Another useful discriminating question where the less able candidates included the outlier in their calculation of the mean, whereas the more able correctly omitted it.

	Titration 1	Titration 2	Titration 3
Final burette reading / cm ³	20.50	40.40	20.00
Initial burette reading / cm ³	0.00	20.50	0.00
Volume added / cm ³	20.50	19.90	20.00

The equation for the reaction is

$$HNO_3 + NaOH \rightarrow NaNO_3 + H_2O$$

(a) Select the appropriate titres and calculate the mean titre in cm³.

(1)

Question 5 (b)

This was the first completely unstructured calculation question on the paper, given that the previous Q3(a)(iii) gave the instruction to use the Ideal Gas Equation. The full range of marks were seen and thus was very discriminatory between different ability candidates, with scores of 1-4 being of similar percentages. The fifth mark proved the most elusive with only 6.6% of candidates gaining full marks. However it was often felt that if the candidates had re-read the question then a number of 4 mark scores would have been increased to 5 marks by either quoting to one decimal place as required in the question, or by adding a statement of the suitability of the use of the acid for the aging of wood.

There was more than one calculation method that could have been used to solve this problem and full credit was given for each method.

(b) Calculate the concentration of the **undiluted** nitric acid in g dm⁻³. Give your answer to one decimal place.

Deduce whether this nitric acid is suitable for use in artificially ageing wood.

 $\frac{19.95}{1000} \times 0.08 = 1.596 \times 10^{-3} \text{ moles}^{(5)}$ $\frac{19.95}{1000} \times 0.08 = 1.596 \times 10^{-3} \text{ moles}^{(5)}$ $\frac{1.596 \times 10^{-3} \text{ moles}}{1.596 \times 10^{-3} \text{ moles}} = 1.596 \times 10^{-2} \text{ moles} \text{ of nitric and}^{(5)}$ $\frac{1.596 \times 10^{-3} \times 10}{1.596 \times 10^{-2} \text{ moles}} = 1.596 \times 10^{-2} \text{ moles} \text{ of nitric and}^{(5)}$ 1. 596×10-2 man = moles XMr = 1.596×10⁻²×63 1.00548 in 0.01dm⁻³ = 1.00548g of HNO₃ 1.00548 = 100.5gdm⁻³ of HNO₃ in 250 cm° flask.

This is an example of one of the acceptable alternative routes for the calculation and gives the final answer correctly to one decimal place. However there is no comment relating to the suitability, or otherwise, of the acid for use and so the fifth mark was not awarded. Hence this response scored four marks.

(b) Calculate the concentration of the **undiluted** nitric acid in g dm⁻³. Give your answer to one decimal place.

Deduce whether this nitric acid is suitable for use in artificially ageing wood.

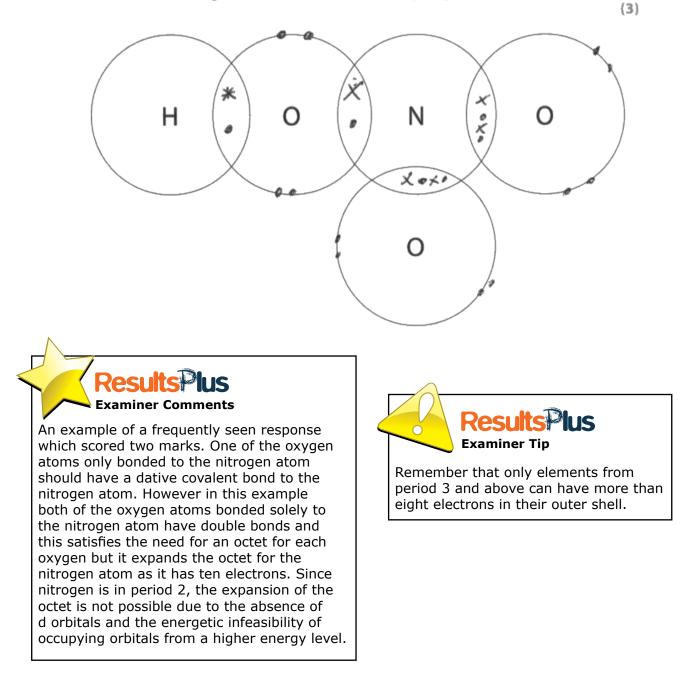
moles & NaOri = 0.08 × 0.01995 = 1.596×10-3 moles (5) mad wook: HNO3 1:1 moles at HNO3 = 1596+10-3 Conc. I HNO3 = 1-596×10-3 = 0.06384 moldun-3 Dilute and conc. I Have - 0.06884 moldun-3 Undituted care. I rates = 0.063=4 × 25 = 1.5-26 mel dur-3 Care in g dur 3 = 1390 1.596 × 63 = 100.548 g dm -3 100.548 g dur⁻³ is very similar to 100 g dur⁻³ so the where acod is suitable for arthrially aging wood.

This is an example of the first calculation route given in the mark scheme and this response scores four marks. The fifth mark is not awarded because although there is a comment on the suitability of the acid for use, the question requires the answer to be given to one decimal place and this has not been done.

Once a response is completed, even if it takes some time, it is always worthwhile re-reading the question to ensure that the answer given does match what is required.

Question 5 (c)

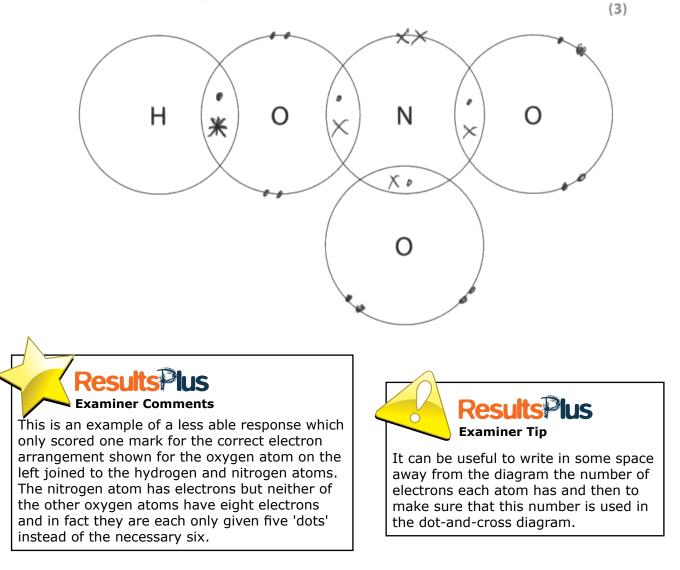
A more challenging dot-and-cross diagram than perhaps many candidates had been used to doing. Responses were possibly centre-specific because the mean at the grade A boundary was only 1.87 but over 12% of candidates scored all three marks.


A single, a double and a dative covalent bond were all required for the successful completion of the diagram. There was no evidence of candidate confusion or difficulty over the use of the different symbols for the electrons.

(c) Complete the dot-and-cross diagram for the bonding in nitric acid, showing only outer shell electrons.

Use (•) for the oxygen electrons,

(**x**) for the nitrogen electrons and (*****) for the hydrogen electron.


5

(c) Complete the dot-and-cross diagram for the bonding in nitric acid, showing only outer shell electrons.

Use (•) for the oxygen electrons,

(**x**) for the nitrogen electrons and (*****) for the hydrogen electron.

Question 5 (d)

Over a third of candidates could correctly calculate the atom economy and these proved to be the more able candidates. Occasionally the mark was lost despite correct working because of incorrect rounding.

(d) One possible method for the formation of nitric acid involves the reaction between dinitrogen tetroxide and water.

$$3N_2O_4 + 2H_2O \rightarrow 4HNO_3 + 2NO_3$$

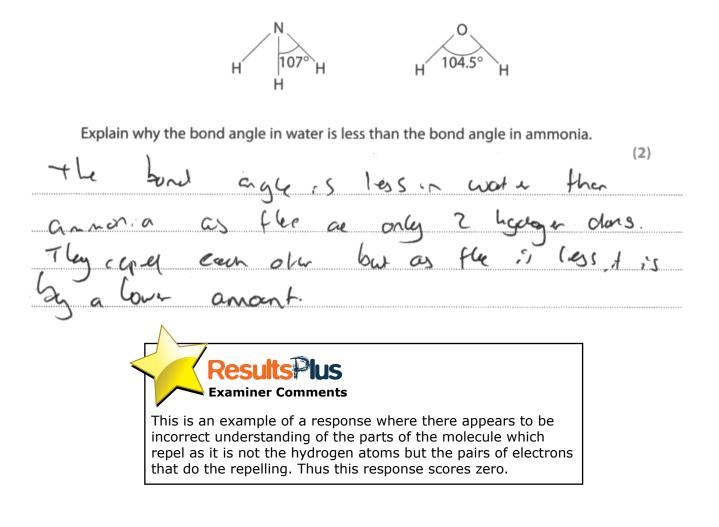
Calculate the atom economy for the formation of nitric acid from this reaction.

Question 6 (a)

The more able candidates were able to correctly make the necessary two points to explain the bond angles in the two molecules. The mark scheme allowed, in this instance, reference to the lone pairs in the molecules rather than lone pairs on the oxygen in water and on nitrogen in ammonia. The more able candidates did not need this allowance and the quality of their answer was distinctly higher.

6 (a) The diagram shows bond angles in ammonia and water.

Explain why the bond angle in water is less than the bond angle in ammonia.


Because oxygen has two lone pour crople which reduce the band each the onel ammonia one lone pacr.

Results Plus

This response scored one mark for the statement that water has two lone pairs whereas ammonia has one lone pair. There is not a clear explicit comment that the lone pair repulsion is greater than bonded pair repulsion or that the repulsion of two lone pairs is greater than one. The statement is just that the angle is reduced without a reason being given. An explanation requires more than a simple statement but includes some justification or reasoning.

(2)

6 (a) The diagram shows bond angles in ammonia and water.

Question 6 (b)

The mean for part (c) was actually less than that for part (b) even though more marks were available in total, which illustrates that candidates found this question the harder of the two. Even those at the grade A boundary had a mean of 0.96 and so this proved to be a challenging question for all. Occasionally correct comments about radii were negated by reference to ions. Candidates have a heightened need for care in their choice of words and terms used in this type of question.

(b) Explain why the O-H and S-H bond lengths are different. 133.6 pm 95.7 pm н (3)D-H and S-H ci diffi Shorm 0s Æ new of borel he (Total for Question 6 = 5 marks) Examiner Comments

In this response the common error of attributing the bond length to differences in electronegativity is seen. The score for this response was zero. (b) Explain why the O—H and S—H bond lengths are different.

О 133.6 pm 95.7 pm н н (3) $(\mathbf{0}$ he can RD otter meg ム **Examiner Comments** It is evident from the answer shown here that the candidate has a good level of understanding and due to the reference to the increased shielding and atomic radius of sulphur the S-H bond length increases in comparison to the O-H bond length. This scored two marks. Unfortunately the effect of this, namely that there will subsequently be less attraction for the bonding electron pair, is missing.

Question 7 (a)

Total scores of three or four marks were the most common ones awarded, although this question did cater for the whole ability range. This is not surprising since it was the first of the new style of question with indicative points rather than marking points per se and for structure and lines of reasoning marks. However there was some disappointment over the way that many responses were poorly constructed and expressed.

Only the more able candidates commented on the fact that the effect of the increased nuclear charge of barium is negated or outweighed by the increased shielding and distance effects.

A small but significant number of candidates commented in general terms about trends down a group rather than specifically referring to barium and strontium as was requested in the question. This was penalised and candidates should always carefully answer the question given rather than one of their own.

7 *(a) A student suggested that the difference in the rates of reaction of st barium with water is due to the difference in the sum of their first and second ionisation energies. Discuss this suggestion. (6) Alami ele. Jasterin Ba as its outer election **Examiner Comments** This example makes four of the indicative points, namely: the sum of ionisation energies for barium is lower, barium has a bigger atomic radius, the barium nucleus has more shielding and that barium has a faster rate of reaction. These four indicative points warranted three

marks and then one additional mark for partial structure and some lines of reasoning.

7 *(a) A student suggested that the difference in the rates of reaction of strontium and barium with water is due to the difference in the sum of their first and second ionisation energies. Discuss this suggestion.

(6) the because bankon could be. This as go down group 2, ionization energy decreases, energy required to meaning MOVE lectrons, ~ so there MOST water will dos barren m the Derawert with she RADISCHER MAD More Vigorously due to the a fact that it can give up electrons easier. However, this 75 N true bast prestos because barrun may react with More vigorously with wat to th e barium metal that 4 has lower than strontium / are packed nsity the metal \$ allowing for in water Paster with more barium atoms metal.

This is a less able answer that scores only two marks. The indicative points made are that barium loses its outer electrons easier and reacts faster, which with partial structuring and some lines of reasoning results in a score of two marks.

also avoid repeating the same point and also avoid repeating any statement given in the question.

Question 7 (c)

This question also proved very discriminatory with the full range of marks awarded, albeit only a small minority of the most able candidates able to gain the fourth mark. The candidates at the lower boundary tended to score one mark or zero, while those at the 'top end' scored either two or three marks. A common error was the failure to refer to 'ions' by only referring to atomic radii.

(c) Explain why magnesium nitrate, Mg(NO₃)₂ decomposes more readily on heating than potassium nitrate, KNO₃.

Magnesium ions have a 2+ charge and a small atomic radius, meaning they have a greater charge density than potassium ions livinice are larger ad have a 1+ charge). This means magnesium ions can distort the nitrate ions more, wheat weaking the bonds. This meas the meas less energy heat energy is required to breake the bonds in magnesium nitrale. So it decomposes more hing then potassium nitrate. **Recults Examiner Comments**

This is clearly the work of an able candidate and scores three out of four marks. The fourth mark is for the weakening of the bonds in the nitrate ion. In this response there is reference to weakening of bonds but it is not clear which bonds are meant and it was evident from other scripts that oftentimes candidates thought that the ionic bond between the cation and anion were affected. Hence if there was no explicit mention of the type of bonds being weakened then the fourth mark was not awarded.

Take care to make clear and unambiguous reference to the type of bonds referred to.

(4)

(c) Explain why magnesium nitrate, Mg(NO₃)₂ decomposes more readily on heating than potassium nitrate, KNO₃.

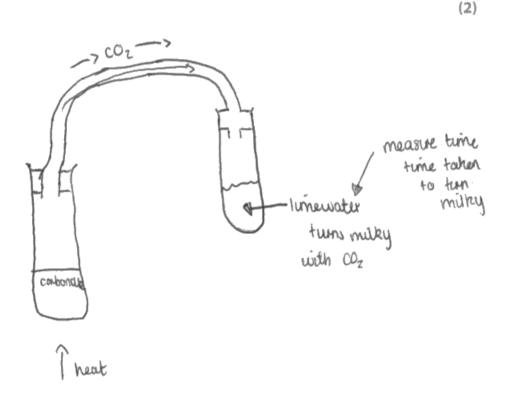
Potassim Adas	hos a	ma	hister	(4)
electron den	s. k	rhis n	nears H	- ~ -
the larger	Parassi	~ 101	Uni pui	, <u>H</u>
Nitione	on wit	h gr	earer for	- دو.
This Mean		Cannor	Le as e	200117
decomposed				
Nucreus. Mo	gresium	IS SA	manier an	n han
			My Mean.	~3
Its Lov	^	011	-love ton	is are
~ Ghrons.				

Results Plus Examiner Comments

This is an example where confusion between charge density and electron density is apparent. These are different terms and electron density is not appropriate because the two variables are conflicting, namely the potassium ion has more electrons than magnesium but over a larger volume. Without access to the figures involved it is not possible to come to a correct conclusion. **Results Plus** Examiner Tip Exercise great care in the use of similar sounding terms but that mean quite

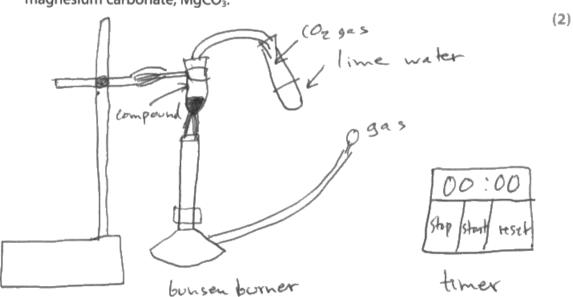
different things and are not equivalent.

Question 7 (d)


The diagrams seen of the experimental apparatus in part (i) certainly left a lot to be desired. They did raise the question whether the candidates had actually done any practice in drawing such apparatus and indeed whether they had done or seen a similar practical. However it is noted that while there is no core practical of this activity, the specification does state that student should understand "experimental procedures to show". The removal of coursework assessment and the emphasis on practical in examinations should encourage centres and their candidates to practice such activities.

An example of the total lack of appreciation of the task required was when a heated crucible was drawn with no attempt, practical or otherwise, at collecting any gas that could be evolved. In addition a number of candidates 'lost track' of where they were in the question or went into 'autopilot' by adding hydrochloric acid to the carbonate rather than heating it.

In part (ii) few correctly referred to the Bunsen setting or distance from the test-tube, with the most common error being the use of the 'same mass' which although would still work to show the difference it does not answer the question of how to ensure a fair test.


The question in part (iii) asked for data that could be used to make a comparison and a number of less able responses simply stated "the time it takes for the carbonate to decompose" which fails to either give a comparison or how the decomposition would be evident.

- (d) Some metal carbonates also undergo thermal decomposition.
 - (i) Draw a diagram of the apparatus that could be used to compare the ease of thermal decomposition of lithium carbonate, Li₂CO₃, and magnesium carbonate, MgCO₃.

use the same mass of each carbonate (iii) State how data obtained in this experiment could be used to make a comparison. (1)the time taken the for the linewater to turn milizy will indicate when coz was produced which shows thermal decomposition so the faster the time, the easier the decomposition **Examiner Comments** The diagram in this response is an illustration of one **Results**Plus of the errors mentioned above, namely that the tube **Examiner Tip** with the limewater is sealed and so there is no way for the gas to escape. The bung/cork in the top of the Practice drawing experimental or test-tube with the carbonate would clearly allow the practical apparatus and make sure gas to escape and so scored one mark for part (i). that it will achieve its purpose. This response also has the common error of "same mass" of carbonate in part (ii) which did not score, however the mark was awarded for part (iii).

- (d) Some metal carbonates also undergo thermal decomposition.
 - Draw a diagram of the apparatus that could be used to compare the ease of thermal decomposition of lithium carbonate, Li₂CO₃, and magnesium carbonate, MgCO₃.

(ii) State one way in which you would ensure a fair test.

Use the same height from butsen flame. From the tip of the flame to the bottom of the boiling tube with the same height.

(iii) State how data obtained in this experiment could be used to make a comparison.

Measure time taken for each compound to decomp \$ Measure time taken for line water to turn cloudy and for each 6pl and 6p2 and compare. Examiner Comments The diagram in part (i) also illustrates another common error in that there appears to be a solid bung/cork in the test-tube with the carbonate and so there is no way for the gas to escape. In addition the delivery tube seems to be going into a sealed test-tube, although the drawing is rather unclear. Both parts (ii) and (iii) scored the marks for suitable answers.

more

decompo

(1)

(1)

is.

Question 8 (b)(i)

Empirical formulae calculations are generally high-scoring questions and this was the case here. However there remain the common errors seen on previous specifications, see below, and which candidates need to avoid.

- (i) One compound contains 45.79% sulfur and 54.21% fluorine by mass. Calculate the empirical formula of this compound. 45.79 (2)54.21 S₅F 13.69 2.853 ... 2 2 ratio is 2esults¤lus Examiner Comments **Results**Plus This is a rather unusual example but one which illustrates the need to double-check working. **Examiner Tip** The correct division is laid out initially but the Always double-check calculations answer to 45.79/32.1 is clearly wrong and surely throughout to eliminate any could have been quickly spotted on review. This relatively straightforward errors. incorrect intermediate answer gives a wrong final empirical formula and this response scored zero.
- (b) Sulfur reacts with fluorine to form a number of different compounds.

- (b) Sulfur reacts with fluorine to form a number of different compounds.
 - (i) One compound contains 45.79% sulfur and 54.21% fluorine by mass. Calculate the empirical formula of this compound.

(2) $Nass \frac{45.79}{29.1} = \frac{54.21}{19} = 54.F_{3}$ $\int \frac{4:7}{54.F_{3}} = \frac{1.63}{1.65} = 1 + \frac{2.853}{1.63} = 1.75$ Nexample of a response where the incorrect relative atomic mass was used and that resulted in zero marks.

Question 8 (b)(ii-iii)

This question was another effective discriminator with a very good spread of marks across the whole ability range. Generally redox appears to be a concept that is well-understood.

One point to highlight is that the question required the oxidation numbers of 'all' of the atoms, with 'all' in bold. A significant number of candidates omitted reference to the fluorine, presumably because the oxidation number didn't change, but this was required and so its absence was penalised. However a number of candidates 'rescued' the mark by annotating the equation above with the respective oxidation numbers.

(ii) In a dry container, a fluoride of silver reacts with sulfur to produce disulfur difluoride. Complete the equation for this reaction. State symbols are not required.

(1)

$S_8 + \mathscr{I}_{4} \mathscr{S}_{4} \mathscr{S}_{2} \rightarrow \mathscr{L}_{4} \mathscr{S}_{2}$	F ₂ + AgF
(iii) Explain, by using the oxidation numbers of all 1 is a redox reaction.	the atoms, whether or not this (3)
Sulphure = O -> +1	s~ r
Silver = +2 -> +1	
F - 1-1-1	
Mus is redox as sulpt	ur has lost an olection
but and silver has gaved	
Results Plus Examiner Comments The stoichiometry in the equation in part (ii) is messy but correct. Candidates do need to make sure that examiners can clearly decipher their work. The oxidation numbers given in (iii) are all correct but there is no mention of oxidation or reduction	Results lus Examiner Tip Use the terms of reduction and oxidation with their associated equations when justifying whether

which is expected when explaining whether a

reaction is a redox reaction or not.

a reaction is redox or not.

 (ii) In a dry container, a fluoride of silver reacts with sulfur to produce disulfur difluoride. Complete the equation for this reaction. State symbols are not required.

$$S_8 + \dots & AgF_2 \rightarrow \dots & S_2F_2 + \dots & AgF$$

on

(iii) Explain, by using the oxidation numbers of **all** the atoms, whether or not this is a redox reaction.

(3)The oxidation of Sg is O, the oxidation no. of 2 is +2. The oxidation runber thur in =2 is +2 to, in AgF it rumber of fluorene in -1 in so sulphar was ondis reduced **Examiner Comments** An example of a response which includes the error of attributing the oxidation number +2 to sulphur **Examiner Tip** in S₂F₂. There is no working shown and this may

have contributed to the error because the candidate

correctly gives the fluorine an oxidation number

of -1 so the sulphur has to be +1. Otherwise the response is correct and scores one mark for the equation and two marks for the oxidation numbers.

Writing oxidation numbers down as a sum can help to eliminate errors.

(1)

Question 8 (c)

This was a very straightforward question requiring candidates to also draw on their GCSE knowledge and understanding with the result that marks of three or four out of four were the most common ones awarded. There was no evidence that the candidates had 'run out of time' at the end of the paper and so these marks were as equally accessible as all the others on the paper.

There continues to be the use of the term 'free' electrons rather than 'delocalised' and this former term is not creditworthy at this level. A small number of candidates also spoilt their answers by referring to intermolecular forces.

(c) Element X has the typical appearance of a metal.

Predict **two** other distinct physical properties that element **X** would exhibit if it is a metal. Explain your choices in terms of structure and bonding.

(4)would wondhit electricity dre to it's SIG de to caused electron bring a ble electronic arres

notthe melting temprehive bhoi hure ny metaller horo

The number of lines provided for the answer does help to give some indication of the depth or quality of the answer expected.

Paper Summary

Based on their performance on this paper, candidates are offered the following advice:

- Practical work is a greater component of the examination questions due to the removal of coursework and thus needs greater emphasis in teaching, which should include the drawing of practical equipment and an understanding of its use.
- Calculations are largely unstructured and thus considerable practice is required by candidates so that they can demonstrate their true ability, with emphasis on clear 'signposting' during their working.
- The phrase "to an appropriate number of significant figures" is an important one because it provides candidates with the opportunity to show that they understand the relevance of the numbers used and from the piece of equipment that they are obtained. This can be supported from the precision of the data given in the question.
- The correct use of appropriate terminology is important if maximum credit is to be achieved as the use of incorrect terms or the 'sloppy' use of correct terms can negate otherwise good chemistry. Particular care is needed with such terms as accuracy, precision and reliability.
- Practice is needed at the longer type comprehension answers in order to enable candidates to construct a coherent and well-reasoned response.
- The maxim 'RTQ²' or "Read the Question Twice" is a good one for candidates so that they ensure that their answers are focused on the relevant areas.
- If candidates apply these lessons and others emphasised above then they can be confident that their examination score will correctly reflect their true ability.

Grade Boundaries

Grade boundaries for this, and all other papers, can be found on the website on this link: http://www.edexcel.com/iwantto/Pages/grade-boundaries.aspx

Llywodraeth Cynulliad Cymru Welsh Assembly Government

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London WC2R 0RL.