

Mark Scheme (Results) January 2011

GCE

GCE Physics (6PH05) Paper 01

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 0844 576 0025, our GCSE team on 0844 576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:

http://www.edexcel.com/Aboutus/contact-us/

Alternatively, you can speak directly to a subject specialist at Edexcel on our dedicated Science telephone line: 0844 576 0037

January 2011 Publications Code UA026596 All the material in this publication is copyright © Edexcel Ltd 2011

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Mark scheme notes

Underlying principle

The mark scheme will clearly indicate the concept that is being rewarded, backed up by examples. It is not a set of model answers.

For example:

(iii) Horizontal force of hinge on table top

66.3 (N) or 66 (N) and correct indication of direction [no ue] ✓ 1 [Some examples of direction: acting from right (to left) / to the left / West / opposite direction to horizontal. May show direction by arrow. Do not accept a minus sign in front of number as direction.]

This has a clear statement of the principle for awarding the mark, supported by some examples illustrating acceptable boundaries.

1. Mark scheme format

- 1.1 You will not see 'wtte' (words to that effect). Alternative correct wording should be credited in every answer unless the ms has specified specific words that must be present. Such words will be indicated by underlining e.g. 'resonance'
- 1.2 Bold lower case will be used for emphasis.
- 1.3 Round brackets () indicate words that are not essential e.g. "(hence) distance is increased".
- 1.4 Square brackets [] indicate advice to examiners or examples e.g. [Do not accept gravity] [ecf].

2. Unit error penalties

- 2.1 A separate mark is not usually given for a unit but a missing or incorrect unit will normally cause the final calculation mark to be lost.
- 2.2 Incorrect use of case e.g. 'Watt' or 'w' will not be penalised.
- 2.3 There will be no unit penalty applied in 'show that' questions or in any other question where the units to be used have been given.
- 2.4 The same missing or incorrect unit will not be penalised more than once within one question.
- 2.5 Occasionally, it may be decided not to penalise a missing or incorrect unit e.g. the candidate may be calculating the gradient of a graph, resulting in a unit that is not one that should be known and is complex.
- 2.6 The mark scheme will indicate if no unit error penalty is to be applied by means of [no ue].

3. Significant figures

3.1 Use of an inappropriate number of significant figures in the theory papers will normally only be penalised in 'show that' questions where use of too few significant figures has resulted in the candidate not demonstrating the validity of the given answer.

4. Calculations

- 4.1 Bald (i.e. no working shown) correct answers score full marks unless in a 'show that' question.
- 4.2 If a 'show that' question is worth 2 marks then both marks will be available for a reverse working; if it is worth 3 marks then only 2 will be available.
- 4.3 use of the formula means that the candidate demonstrates substitution of physically correct values, although there may be conversion errors e.g. power of 10 error.
- 4.4 recall of the correct formula will be awarded when the formula is seen or implied by substitution.

1

1

3

- 4.5 The mark scheme will show a correctly worked answer for illustration only.
- 4.6 Example of mark scheme for a calculation:

'Show that' calculation of weight

Use of $L \times W \times H$

Substitution into density equation with a volume and density

Correct answer [49.4 (N)] to at least 3 sig fig. [No ue] [If 5040 g rounded to 5000 g or 5 kg, do not give 3rd mark; if conversion to kg is omitted and then answer fudged, do not give 3rd mark] [Bald answer scores 0, reverse calculation 2/3]

Example of answer:

 $80 \text{ cm} \times 50 \text{ cm} \times 1.8 \text{ cm} = 7200 \text{ cm}^3$

 $7200 \text{ cm}^3 \times 0.70 \text{ g cm}^{-3} = 5040 \text{ g}$

 5040×10^{-3} kg × 9.81 N/kg

= 49.4 N

5. Quality of Written Communication

- 5.1 Indicated by QoWC in mark scheme. QWC Work must be clear and organised in a logical manner using technical wording where appropriate.
- 5.2 Usually it is part of a max mark.

6. Graphs

- 6.1 A mark given for axes requires both axes to be labelled with quantities and units, and drawn the correct way round.
- 6.2 Sometimes a separate mark will be given for units or for each axis if the units are complex. This will be indicated on the mark scheme.
- 6.3 A mark given for choosing a scale requires that the chosen scale allows all points to be plotted, spreads plotted points over more than half of each axis and is not an awkward scale e.g. multiples of 3, 7 etc.
- 6.4 Points should be plotted to within 1 mm.
 - Check the two points furthest from the best line. If both OK award mark.
 - If either is 2 mm out do not award mark.
 - If both are 1 mm out do not award mark.
 - If either is 1 mm out then check another two and award mark if both of these OK, otherwise no mark.

For a line mark there must be a thin continuous line which is the best-fit line for the candidate's results.

Section A

Question	Answer	Mark
Number		
1	D	1
2	С	1
3	D	1
4	С	1
5	В	1
6	В	1
7	В	1
8	В	1
9	A	1
10	D	1

Question	Answer		Mark
Number			
11(a)	Use of $pV = NkT$	(1)	
	T = 870 (K) OR p = 12.4 (atmospheres)	(1)	2
	If final pressure is given as 1.24×10^6 Pa, then just "use of" mark		
	Example of calculation: $T = \frac{pV}{Nk} = \frac{12 \times 1.0 \times 10^5 \text{ Nm}^{-2} \times 3.00 \times 10^{-4} \text{ m}^3}{3 \times 10^{22} \times 1.38 \times 10^{-23} \text{ JK}^{-1}} = 869.6 \text{ K}$		
	OR		
	$p = \frac{NkT}{V} = \frac{3 \times 10^{22} \times 1.38 \times 10^{-23} \text{ JK}^{-1} \times 900 \text{ K}}{3 \times 10^{-4} \text{ m}^3}$		
	$\therefore p = 1.24 \times 10^{6} \mathrm{Pa} = \frac{1.24 \times 10^{6} \mathrm{Pa}}{3 \times 10^{-4} \mathrm{Pa}} = 12.4$		
11(b)*	(QWC – Work must be clear and organised in a logical manner using technical wording where appropriate)	g	
	Atoms/molecules would gain energy	(1)	
	<u>Atoms/molecules</u> would escape from the liquid OR liquid propellant would vaporise / turn into gas OR the amount of gas in can would		
	increase	(1)	
	Pressure would increase due to both temperature/energy increase an increase in amount of gas OR pressure would increase more for the same temperature increase OR pressure would be greater than 12 atmospheres before 900 K	d	
	OK pressure would be greater than 12 autospheres before 900 K	(1)	Max 3
	Can would explode before 900 K reached	(1)	
	Total for question 11		5

Question	Answer		Mark
Number			
12(a)	Use of $L/4\pi d^2$ or $F \propto 1/d^2$	(1)	
	$F_{\rm mars}/F_{\rm earth} = 0.43$	(1)	2
	Accept 1 : 2.35 or other ratio simplifying to 0.43		
	Example of calculation		
	$F = \frac{L}{4\pi\pi^2}$		
	$\frac{F_{\text{mars}}}{F_{\text{earth}}} = \frac{d_{\text{earth}}^2}{d_{\text{mars}}^2} = \left(\frac{1.5 \times 10^{11} \text{ m}}{2.3 \times 10^{11} \text{ m}}\right)^2 = 0.43$		
12(b)	Observation that (radiation) flux is about half that on the Earth OR Ea has about double the (radiation) flux of Mars (ecf answer to (a))	arth (1)	
	Sensible comment that makes reference to energy/intensity/number o photons	f	
	OR sensible comparison with polar or deep sea regions on the Earth		
	OR reference to a thinner atmosphere (allowing a greater fraction of		
	photons get through to surface)	(1)	2
		~ /	
	Total for question 12		4

Question	Answer	Mark
Number		
13(a)	Object must have a standard/known luminosity OR luminous properties	
	independent of its position (1)	
	It can be used to calculate distances (1)	
	Reference to any two of the following:	
	 ♦ Radiation/energy flux <u>measured</u> (1) 	
	◆ Observed brightness compared with luminosity (1)	
	◆ Use of inverse square law [accept if equation quoted] (1)	Max 4
	• Object must be commonly found in the universe (1)	
13(b)	When star contracts (front of) star is moving away from observer OR	
	explanation in terms of a rotating/binary star (1)	
	Movement away from observer results in a decrease in the frequency of	
	the radiation/red shift (1)	2
	Accept converse argument for an expanding star	
	Total for question 13	6

Question	Answer		Mark
Number			
14(a)(i)	Use of πr^2 or $\pi d^2/4$	(1)	
	Use of $\rho=m/V$	(1)	
			3
	m = 1960 (kg)	(1)	5
	2		
	Reverse argument leading to $\rho = 9130 \text{ (kg m}^{-3}\text{) scores max } 2$		
	Example of calculation		
	$\frac{1}{2} \frac{1}{2} \frac{1}$		
	$V = \pi r^2 \ell = \pi \times (0.815 \times 10^{-3} \text{ m})^2 \times 105 \times 10^3 \text{ m} = 0.219 \text{ m}^3$		
	$m = 0 V = 8960 \text{ kgm}^{-3} \times 0.219 \text{ m}^{3} = 1962 \text{ kg}$		
14(a)(ii)	Use of $\Delta F = mc \Delta T$	(1)	
		(1)	
	$\Delta E = 8.0 imes 10^8 ext{ J}$	(1)	2
	$\Delta E = 8.2 \times 10^8$ J if show that value used		
	Example of calculation		
	$\Delta E = m c \Delta \theta = 1962 \text{ kg} \times 385 \text{ JK}^{-1} \text{ kg}^{-1} \times (1085 - 25) \text{ K} = 8.0 \times 10^8 \text{ J}$		
14(b)	Idea that whilst copper is being heated to melting point, energy sup	plied	
	is (mainly) transformed into K.E. of atoms/molecules	(1)	
	At melting point:		
	no change in K.E. of atoms/molecules OR energy supplied is		_
	transformed into P.E. of atoms/molecules	(1)	2
	Total for question 14		7

Question Number	Answer		Mark
15(a)(i)	Use of $\omega = 2\pi/T$	(1)	
	$\omega = 2.66 \times 10^{-6} (\text{rad s}^{-1})$	(1)	2
	Example of calculation		
	$\omega = \frac{2\pi}{T} = \frac{2\pi}{27.3 \times 24 \times 3600 \text{ s}} = 2.66 \times 10^{-6} (\text{rad}) \text{s}^{-1}$		
15(a)(ii)	See $(F =) \frac{Gm_1m_2}{r^2}$	(1)	
	Evidence that gravitational force equated to centripetal force	(1)	
	Correct substitution [e.c.f.]	(1)	
	$r = 3.92 \times 10^8 \text{ m}$	(1)	4
	If show that value is used, $r = 3.62 \times 10^8$ m		
	Example of calculation		
	$\frac{GMm}{2} = m\omega^2 r$		
	$r^{3} = \frac{GM}{\omega^{2}}$		
	$\therefore r = \sqrt[3]{\frac{6.67 \times 10^{-11} \text{Nm}^2 \text{kg}^{-2} \times 6.4 \times 10^{24} \text{kg}}{(2.66 \times 10^{-6} \text{s}^{-1})^2}} = 3.92 \times 10^8 \text{m}$		
15(b)(i)	Max two from:	(1)	
	 Gravitational force on moon is reduced (Therefore) ω or v is decreased 	(1) (1)	
	 (Hence) the orbital time increases 	(1)	
	• Valid reference to Kepler's law: $T^2 \alpha r^3$	(1)	Max 2
15(b)(ii)	Rate of increase = 4 (cm per year)	(1)	1
	Example of calculation		
	Rate of increase = $800 \text{ cm} / 200 \text{ yr} = 4 \text{ cm yr}^{-1}$		
15(b)(iii)*	(QWC – Work must be clear and organised in a logical manner usin	g	
	technical wording where appropriate)		
	Answers based on expanding universe/galaxies/stars do not gain cre	dit	
	Idea that in the past the moon was closer OR the gravitational pull		
	would have been larger	(1)	
	In the past the tidal effects would have been greater/stronger The rate of change of orbital radius would have been greater	(1)	3
	Total for question 15	(1)	12

Question	Answer		Mark
16(a)(i)	Use of $f = 1/T$	(1)	
10(a)(l)	0.5001 J - 1/T	(1)	
	f = 8 Hz	(1)	2
	Example of calculation		
	$f = \frac{1}{T} = \frac{1}{2 \times 0.0625 s} = 8 Hz$		
16(a)(ii)	At the equilibrium (position) / centre of the oscillation / mid-point	(1)	1
16(a)(iii)	Use of $v_{max} = 2\pi f A OR v_{max} = \omega A$	(1)	
	$v_{max} = 2.5 \text{ ms}^{-1} [\text{ecf for } (a)(i), \text{ see table below}]$	(1)	2
	Example of calculation		
	$v = 2\pi f A = 2\pi \times 8s^{-1} \times 5 \times 10^{-2} m = 2.5 m s^{-1}$		
16(b)(i)	Idea that the system is forced / driven into oscillation at / near its natural		
	frequency		
	OR driver / forcing frequency is equal / near to <u>natural</u> frequency	(1)	
	Leads to large/max energy transfer OR large/max/increasing amplitude	(1)	2
16(b)(ii)	Max 2		
	 Rubber feet (deform and) absorb (vibration) energy 	(1)	
	Reference to damping	(1)	
	 Idea that energy is removed from system 	(1)	max 2
	Hence amplitude does not build up	(1)	
	Total for question 16		9

When marking 16(a)(iii) the table below may be helpful:

f/Hz	A/cm	v/ms ⁻¹	Marks
8	5	2.5	2
16	5	5	2
8	10	5	1
16	10	10	1

Question	Answer		Mark
Number			
17(a)*	(QWC – Work must be clear and organised in a logical manner using		
	technical wording where appropriate)		
	Appropriate reference to the following:		
	 The penetrating power of beta radiation 		
	 The ionising effects of the beta radiation 		
	The shielding effect that the cylinder might have had		may 2
	The constant activity over the 5 day period		11107 2
	Examples of responses:		
	Beta radiation is (moderately) ionising		
	Beta radiation is able to penetrate the body		
	Once inside the body beta radiation may damage / kill / mutate / alter		
	DNA of cells		
	Beta radiation is absorbed by a few mm of aluminium		
	Cylinder may have reduced the radiation to safe levels / absorbed the		
	beta radiation		
	Greater risk of exposure if cylinder damaged or cracked		
	Long half life means that		
	source stays active for a long time/activity unlikely to lower over 5 days		
17(b)	$\frac{137}{137} \mathbf{D} = 0$		
	Top line: $Ba \ ^{0}\beta^{-}$	(1)	
		. /	
	Bottom line: 56 Ba $_{-1}\beta^{-1}$	(1)	2
17(c)(i)	Cannot identify which atom/nucleus/particle will be the next to decay		
	OR cannot say when a given atom/nucleus/particle will decay		
	Site callies buy when a Siten atomy nucleus, particle will accuy		
	OR cannot state exactly how many atoms/nuclei/narticles will decay in a		
	set time		
	OR can only estimate the fraction of the total number that will decay in		
	the next time interval	(1)	1
		(1)	

17(c)(ii)	Use of $\lambda T_{1/2} = \ln 2$	(1)	_
	Decay constant, $\lambda = 7.3 \times 10^{-10} (s^{-1})$	(1)	2
	Example of calculation		
	$\lambda = \frac{\log_e 2}{T_{\frac{1}{2}}} = \frac{0.693}{30 \times 365 \times 24 \times 3600 \mathrm{s}} = 7.32 \times 10^{-10} \mathrm{s}^{-1}$		
17(d)	Use of $\frac{dN}{dt} = \left(\frac{dN}{dt}\right)_0 e^{-\lambda t}$	(1)	
	activity = 3.3×10^{13} Bq [3.3×10^{13} Bq if show that value used] Use of $dN/dt = \lambda N$ $N = 4.5 \times 10^{22}$ [4.8×10^{22} if show that value used]	(1) (1) (1)	4
	OR	(-)	
	Use of $dN/dt = \lambda N_o$ $N_o = 7.1 \times 10^{22} [N_o = 7.4 \times 10^{22} \text{ if show that value used}]$	(1) (1)	
	Use of $N = N_0 e^{-1}$ $N = 4.5 \times 10^{22} [4.8 \times 10^{22} \text{ if show that value used}]$ Example of calculation	(1)	
	$\frac{dN}{dt} = \left(\frac{dN}{dt}\right)_{0} e^{-\lambda t} = 5.2 \times 10^{13} \text{ Bq} \times e^{-7.32 \times 10^{-10} \text{ s}^{-1} \times 20 \times 365 \times 24 \times 3600 \text{ s}}$		
	$= 3.28 \times 10^{13} \text{ Bq}$		
	N = $\frac{dN/dt}{\lambda} = \frac{3.28 \times 10^{13} \text{ s}^{-1}}{7.32 \times 10^{-10} \text{ s}^{-1}} = 4.48 \times 10^{22}$		
17(e)(i)	$^{95}_{37}Rb + 4 \times ^{1}_{0}n$	(1)	1
17(e)(ii)	Idea that at least one neutron needs to be available to be absorbed for a chain reaction to be sustained	(1)	
	Appreciation of the need to control/limit/restrict the number of neutrons (which can go on to produce another fission)	(1)	2
	Total for question 17		12

Question	Answer		Mark
Number			
18(a)	Max 4		
	Assumption: that no energy is transferred to the surroundings OR all ene	rgy	
	transferred from washers to water OR energy required to raise temperatu	re	
	of container is negligible OR no water evaporates	(1)	
	Measure the mass of the washers and water (using a balance)	(1)	
	(Use a thermometer to) measure the temperature of the water before and after the washers are plunged into the water	(1)	
	and the menero are president the mener	(-)	
	Equate thermal energy lost by steel to the energy gained by water	(1)	
			Max 4
	OB anasific heat consists of water is known	(1)	
18(h)(i)	Infra rad	(1)	1
18(b)(ii)	$T_{-2} = 2.808 \times 10^{-3}$	(1)	•
10(0)(1)	$0.5001 \lambda_{max} 1 - 2.898 \times 10$	(1)	
	$T = 1450 (K)$ OR $\lambda_{max} = 1.93 \times 10^{-6} (m)$	(1)	2
	Example of calculation		
	$T = 2.898 \times 10^{-3} \text{ mK} = 1450 \text{ K}$		
	$1 - \frac{1}{2 \times 10^{-6}} \text{ m} = 1450 \text{ K}$		
18(b)(iii)	Use of $L = 4\pi r^2 \sigma T^4$	(1)	
	Correct substitution of radius	(1)	
	L = 1970 W [2250 W if show that value used]	(1)	3
	Example of calculation		
	$\frac{1}{L} = 4\pi \times (2.5 \times 10^{-2} \text{ m})^2 \times 5.67 \times 10^{-8} \text{ Wm}^{-2} \text{ K}^{-4} (1450 \text{ K})^4 = 1970 \text{ W}$		
18(b)(iv)	Curve with higher peak	(1)	
	Shifted over to left	(1)	2
	Total for question 18		12

GCE Physics 6PH05/01 Results Mark Scheme January 2011

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481 Email <u>publications@linneydirect.com</u> Order Code UA026596 January 2011

For more information on Edexcel qualifications, please visit www.edexcel.com/quals

-

-

Edexcel Limited. Registered in England and Wales no.4496750 Registered Office: One90 High Holborn, London, WC1V 7BH