

Mark Scheme (Results) January 2012

GCE Chemistry (6CH05) Paper 01 General Principles of Chemistry II Transition Metals and Organic Nitrogen Chemistry (including synoptic assessment)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please call our GCE line on 0844 576 0025, our GCSE team on 0844 576 0027, or visit our qualifications website at www.edexcel.com.

For information about our BTEC qualifications, please call 0844 576 0026, or visit our website at www.btec.co.uk.

If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link: http://www.edexcel.com/Aboutus/contact-us/

Alternatively, you can contact our Science Subject Advisor directly by sending an email to ScienceSubjectAdvisor@EdexcelExperts.co.uk_.

You can also telephone 0844 576 0037 to speak to a member of our subject advisor team.

(If you are calling from outside the UK please dial + 44 1204 770 696 and state that you would like to speak to the Science subject specialist).

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2012
Publications Code UA030269

All the material in this publication is copyright © Pearson Education Ltd 2012

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Mark schemes will indicate within the table where, and which strands
 of QWC, are being assessed. Questions labelled with an asterix (*)
 are ones where the quality of your written communication will be
 assessed.

Using the Mark Scheme

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.

/ means that the responses are alternatives and either answer should receive full credit.

() means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.

Phrases/words in **bold** indicate that the <u>meaning</u> of the phrase or the actual word is **essential** to the answer.

ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

- write legibly, with accurate use of spelling, grammar and punctuation in order to make the meaning clear
- select and use a form and style of writing appropriate to purpose and to complex subject matter
- organise information clearly and coherently, using specialist vocabulary when appropriate.

Full marks will be awarded if the candidate has demonstrated the above abilities.

Questions where QWC is likely to be particularly important are indicated (QWC) in the mark scheme, but this does not preclude others.

Section A (multiple choice)

12		1
Question Number	Correct Answer	Mark
11	С	1
Question Number	Correct Answer	Mark
10	В	1
Question Number	Correct Answer	Mark
9	В	1
Question Number	Correct Answer	Mark
8	D	1
Question Number	Correct Answer	Mark
7	С	1
Question Number	Correct Answer	Mark
J	טן	
Question Number 6	Correct Answer B	Mark 1
5	D	1
Question Number	Correct Answer	Mark
4	В	1
Question Number	Correct Answer	Mark
3	A	1
Question Number	Correct Answer	Mark
2	D	1
Question Number	Correct Answer	Mark
	A	L
Number 1		1
Question	Correct Answer	Mark

Question Number	Correct Answer	Mark
13	С	1
	-	,
Question Number	Correct Answer	Mark
14	В	1
Question Number	Correct Answer	Mark
15	C	1
	1	
Question Number	Correct Answer	Mark
16	D	1
	1	
Question Number	Correct Answer	Mark
17	C	1
Question Number	Correct Answer	Mark
18	D	1
Question Number	Correct Answer	Mark
19	D	1
Question Number	Correct Answer	Mark
20	A	1

TOTAL FOR SECTION A = 20 MARKS

Section B

Question Number	Acceptable Answers	Reject	Mark
21(a)	$3d^34s^2$ OR $4s^23d^3$ $3d^54s^1$ OR $4s^13d^5$		1
	both must be correct.		
	ALLOW Electron numbers could be on the line or as subscripts IGNORE case of letters		

Question Number	Acceptable Answers	Reject	Mark
21(b)(i)	Variable/varying/different/several/ more than one oxidation state / number (1)	Each metal has a different oxidation number	2
	Complex (ion formation) (1)	Ligand exchange	
	Treat Physical properties (if correct) including catalytic activity as neutral		

Question Number	Acceptable Answers	Reject	Mark
21(b)(ii)	The following metals scores (2) marks with correct E value: Mg 1.96, Ce 1.92, U 1.39, Al 1.25, Mn 0.78, V 0.77, Zn 0.35	All other metals 0/2	2
	NOTE: Positive sign/unit not needed, but penalise negative value		
	The following metals score (1) mark with correct E value: Li 2.62, Rb 2.52, K 2.51, Ca 2.46, Na 2.30, Cr 0.33, Fe 0.03		
	NOTE: Positive sign/unit not needed, but penalise negative value		

Question Number	Acceptable Answers	Reject	Mark
21(b)(iii)	Not a redox process Chromate and dichromate both the same/no change in oxidation number (1)		2
	contain Cr(VI) 6/6+ (1)		
	Mark independently		
	OR		
	Not redox and both contain Cr(VI) 6/6+ (2)		

Question Number	Acceptable Answers	Reject	Mark
21(b)(iv)	Forms two (dative/covalent) bonds/has two lone pairs (to the Transition Metal/ion) OR	`to the molecule'	1
	donates two pairs of electrons (to the Transition Metal/ion) Check answer to (v) if mark not		
	awarded here		

Question Number	Acceptable Answers	Reject	Mark
21(b)(v)	Any two from Both have two nitrogen atoms with lone pairs or implied (1) or Far enough apart/longer chain in	N=N, or triple bond in hydrazine max 1 or if implies only en has lone pairs max 1	2
	between in en (but not in hydrazine)/too close in hydrazine/hydrazine is too short/not as long (1)		
	Dative bonds/lone pairs too close/repel in hydrazine (1) OR for two marks		
	Forms 5-membered ring (with en with no angle strain/stable) (2) or Bond angles too acute/too much ring strain in hydrazine (2)		
	Mark for iv can be awarded here.		

Question Number	Acceptable Answers	Reject	Mark
21(c)(i)	- 0.41 (V)		1
	+1.33 (V)		
	Both answers needed, with number and sign, for 1 mark		
	IGNORE additional words		

Question Number	Acceptable Answers		Reject	Mark
*21(c)(ii)	Combines the equations to obta	in		4
QWC	$8Cr^{3+} + 7H_2O \rightarrow 6Cr^{2+} + Cr_2O_7^{2-} + 14H^+$			
	ALLOW 6Cr ³⁺ + 2Cr ³⁺ instead of 8Cr ³⁺	f	1 max for the equation if	
	IGNORE state symbols even if wrong		electrons are shown balanced or unbalanced	
	species (1), balance (1)			
	$E_{\text{reaction}}^{\bullet} = -1.74V$	(1)		
	So not feasible on condition of negative value	(1)		
	OR			
	$6Cr^{2+} + Cr_2O_7^{2-} + 14H^+ → 8Cr^{3+} - 7H_2O$	ŀ		
	If fully correct	(1)		
	$E_{\text{reaction}}^{\circ} = + 1.74V$	(1)		
	Disproportionation not feasib	le on		
	condition of positive value but reject 'reaction is spontaneous'	(1)		
	Other wrong equations			
	IF Cr ₂ O ₇ ²⁻ or Cr ²⁺ on left			
	Then + 1.74 V	(1)		
	If Cr ³⁺ alone on the left			
	Then -1.74 V	(1)		
	and reaction not feasible	(1)		

Question Number	Acceptable Answers	Reject	Mark
22(a)(i)	C 60/12 = 5		1
	H 8/1 = 8		
	O 32/16 = 2 ALLOW 1 mol = 100 g		
	So 60 %C = C_5 , etc		

Question Number	Acceptable Answers		Reject	Mark
22(a)(ii)	C=C			4
	Test : add bromine water/Br₂(aq)	_	Bromine/Br ₂ /Br ₂ (I)	
	Result: From yellow/brown/red- brown/orange to colourless/decolorises (1	L)	clear for colourless	
	OR			
	Test : add (acidified) potassium manganate((VII)) (solution) (1)		clear for colourless	
	Result: goes from pink/purple to colourless/brown (1			
	Test : add alkaline potassium manganate((VII)) (solution) (1)		PCl ₅ /LiAlH ₄ as test	
	Result: goes green (1	L)	NaOH/NaOH(aq)	
	соон:			
	Test: add NaHCO ₃ /Na ₂ CO ₃ /sodium carbpnate (solution) (1	L)	colourless gas evolved	
	Result:			
	Fizzes/bubbles/large volume neutralized (1	.)		

	LLOW gas given off that turns mewater cloudy			
OI)R			
Te	est: with blue litmus	(1)		
R	Result: turns red	(1)		
in in	he test can be with any other ndicator, including universal ndicator, with the correct initiand final colour	I	Add sodium	
	.ra ililar ssissa.		colourless gas evolved	
	LLOW H meter	(1)		
pl	H 4-6	(1)		
Ol	OR .			
	est : add ethanol with conc l ₂ SO ₄ (and warm)	(1)		
	Result : gives pleasant/fruity s f ester	mell (1)		
OI	PR			
Te	est: add magnesium	(1)		
	R esult: fizzing/bubbles etc (of ydrogen)	(1)		
	LLOW gas given off that burns vith a squeaky pop	5		

Question Number		Reject	Mark
22(b)(i)	Explanation of precedence/priority in terms of atomic numbers/masses of the attached groups OR	Both CH ₃ /methyl groups on the same side so Z (0/2)	2
	Highest-precedent/priority groups on each carbon are on opposite sides of the molecule (1) E-/entgegen (1)		
	Mark independently		

Question Number	Acceptable Answers	Reject	Mark
22(b)(ii)	45 COOH ⁺ /CO ₂ H ⁺ (1)		2
	55 C ₄ H ₇ ⁺		
	OR		
	C ₃ OH ₃ ⁺ (1)		
	ALLOW Structural/displayed formulae of ions		
	Absence of + charge (1 max)		

Question Number	Acceptable Answers	Reject	Mark
22(b)(iii)	If they say yes (0)		1
	(No) (Cleavage of the C—COOH bond in) both compounds gives fragment(s) of the same mass OR Both give the same peak(s)/fragment(s)	'No' on its own	
	Both give $CO_2H^+/C_4H_7^+$ fragments The mark can be scored by referring		
	to just one of the fragments/peaks/masses.		

Question Number	Acceptable Answers		Reject	Mark
*22(c)(i) QWC	C is CH₃CHO (alone)	(2)	CH₃COH 1 max	6
QWC	D is CH₃COCOOH (alone)	(2)		
	so tiglic acid must be B	(1)		
	tiglic acid mark can only be awarded if correct structures of either C or D are gi	ven.		
	Any one of the following			
	C must be an aldehyde	(1)		
	D is a ketone	(1)		
	Mention that CH₃CO present in either/bo compounds (because of formation of iodoform)	th (1)		
	If one or both of the structures are incor any of the last 3 marks can be awarded max 5	rect		
	If C and D are fully correct, but the wron way round max 5	ng		

Question Number	Acceptable Answers	Reject	Mark
22(c)(ii)	Doesn't distinguish <i>E</i> - isomer from <i>Z</i> - isomer/geometric isomers (so no) OR Doesn't distinguish which sides of C=C functional groups are on	Just isomers/ stereoisomers/ enatiomers	1

Question Number	Acceptable Answers		Reject	Mark
22(d)(i)	CH₃CHO ((1)	CH₃COH	4
	ACCEPT displayed or skeletal			
	Step 1			
	(heat)using acidified potassium dichromate/or H ⁺ /Cr ₂ O ₇ ²⁻	(1)	Manganate VII/KMnO ₄	
	distil (product as formed) condition on dichromate	nal (1)	Reflux	
	Step 2			
	HCN with KCN		HCN alone	
	OR			
	KCN with H ⁺ /acid			
	OR			
	KCN with (cold) NaOH(aq)/alkali ((1)		
	ALLOW HCN with NaOH/alkali			
	For step 2 Ignore conditions e.g. a references to heat	any		

Question Number	Acceptable Answers	Reject	Mark
22(d)(ii)	Nucleophilic addition	Nutro philic addition	1
	Any recognisable spelling of 'philic' and addition, either order		
	Both words needed	Any other or additional words	

Question Number	Acceptable Answers	Reject	Mark
*22(d)(iii) QWC	Ethanal is planar (at the reaction site)	Intermediate is planar Square planar	2
	OR		
	Ethanal is a planar molecule (1)		
	Attack (from CN ⁻ to give the cyanohydrin) is (equally likely) from either side/above or below/from both sides (of the molecule) (so a racemic mixture is formed) (1)	Can attack carbocation from either side/any reference to SN1/SN2	
	Mark independently		

Question Number	Acceptable Answers	Reject	Mark
22(d)(iv)	Receptors for the compound in the body are often stereospecific so only one stereoisomer is pharmacologically active		1
	OR		
	Body recognises one (stereo)isomer		
	ALLOW		
	Only one (stereo)isomer is active		
	OR		
	One/the other isomer may be toxic/dangerous/harmful		
	OR		
	One isomer destroys body cells		
	OR		
	(Different) isomers have different biological/pharmacological/biochemical properties		

Question Number	Acceptable Answers	Reject	Mark
23(a)(i)	Formula showing $-NH_3^+$ and $-COO^-$ $/-CO_2^-$		1
	Charges can be anywhere on functional group		
	Rest of the molecule must be correct		
	ALLOW displayed/part displayed formula		

Question Number	Acceptable Answers	Reject	Mark
23(a)(ii)	Any two from		2
	High energy needed (to overcome) (1)		
	strong ionic/electrostatic forces OR strong forces between oppositely charged ions/between positive and negative (1)	any reference to intermolecular forces eg (strongly) polar/bond	
	between different (zwitter)ions	polarity	
	OR		
	between -NH ₃ ⁺ and -COO ⁻	if they state the ionic bond is within the same	
	OR	molecule	
	between one molecule and another		
	OR		
	Chains of zwitterions/molecules (1)		

Question Number	Acceptable Answers		Reject	Mark
23(a)(iii)	H O H O			2
	Correct peptide link	(1)		
	Minimum two residues and extensito the rest of the molecule	ion (1)		
	ALLOW -NHCH ₂ CONHCH ₂ CO-	(2)		
	Drawn the other way round, i.e. starting with the carbonyl group			
	Brackets around outside with 'n' ie $(\dots)_n$!		
	Second mark depends on first			

Question Number	Acceptable Answer	Reject	Mark
*23(b)	Key Points		5
QWC	KP1 Spot (of hydrolysate) on paper/tlc/thin layer chromatogram (1)	Spot one amino acid/protein	
	KP2 Marker spots of known aminoacids/measure R_f (1)		
	KP3 Run in (suitable) solvent/discussion of comparative solubilities in phases (1)	Water alone as solvent	
	KP4 (Spray with) ninhydrin (and heat) [Stand alone mark] (1)		
	KP 5 Marker spots and the unknown spots correspond ALLOW Compare R _f values of marker spots with hydrolysate spots (1)		
	OR		
	If 2-d chromatography used (2 different solvents run in two directions at right angles):		
	KP1 Spot (of hydrolysate) on paper/tlc/thin layer chromatogram (1)	Spot one amino acid	
	KP2 Run in (suitable) solvent in one direction (1)		
	KP3 Develop in suitable/different solvent at right angles OR discussion of comparative solubilities in phases (1)		
	KP4 Spray with ninhydrin (andheat) (1)		
	KP5 Compare hydrolysate spots with same experiment for known amino acids (1)		
	OR		

if column/GLC/GC used			
KP1 Put amino acid mixture (Hydrolysate) into column	(1)	Spot one amino acid	
KP2 Separately known amino-arinto column	cids (1)		
KP3 Detect amino acids in efflue with Ninhydrin/mass spectromet			
KP4 Measure retention times/ discussion of comparative solubi in phases	ilities (1)		
KP 5 Compare retention times	(1)		

TOTAL FOR SECTION B = 50 MARKS

Section C

Question Number	Acceptable Answers	Reject	Mark
24(a)(i)	Not knowing the structure of the molecule (means that the reactions/reagents/reactants needed to make it are also unknown) ALLOW Structure not known		1

Question Number	Acceptable Answers	Reject	Mark
24(a)(ii)	Credit any reasonable arguments for example:		2
	First mark No longer any demand for madder/indigo		
	OR		
	Cheaper alternatives available (1)		
	Second mark So the growing industries collapsed		
	OR		
	no market for crops		
	OR		
	farmers had to grow alternative crops		
	OR		
	decreased employment		
	OR		
	economic damage		
	OR		
	decreased GDP		
	OR		
	Loss of export (1)		

Question Number	Acceptable Answers	Reject	Mark
24(b)(i)	First mark Double bonds expected to react with bromine water turning it colourless		2
	OR		
	Bromine water remained yellow/orange/red/brown (1)		
	Second mark So benzene does not contain double bonds		
	OR		
	Double bonds not normal/not simply double bonds/any indication that double bonds are different		
	OR		
	His representation incorrect (1)		

Question Number	Acceptable Answers	Reject	Mark
24(b)(ii)	The p/pi-/π/6 electrons (of carbon) OR π system (1)		3
	Electrons are delocalised around the ring (1)		
	Which gives the molecule greater stability/need more energy to break the bonds in benzene (and hence a less exothermic hydrogenation enthalpy) Allow it is more stable (1)	Harder to break/disrupt [alone]	

Question Number	Acceptable Answers	Reject	Mark
24(c)	$2H_2SO_4 + HNO_3 \rightarrow NO_2^+ + H_3O^+ + 2HSO_4^-$ (1)		4
	OR		
	$H_2SO_4 + HNO_3 \rightarrow NO_2^+ + H_2O + HSO_4^-$		
	OR $H_2SO_4 + HNO_3 \rightarrow H_2NO_3^+ + HSO_4^-$ and $H_2NO_3^+ \rightarrow NO_2^+ + H_2O$		
	Charges are needed for first mark		
	$ \overset{\oplus}{ \hspace{1cm}} NO_2 \hspace{1cm} \overset{\oplus}{ \hspace{1cm}} NO_2$		
	Θ H HSO_4 NO_2 $+H_2SO_4$		
	Attack on nitronium ion arrow must start on or in the benzene (1)		
	Wheland intermediate Can be a part, but not complete circle, in correct place inside ring BUT part circle must cover minimum of 3 carbon atoms AND must not include where nitro group is attached and must positive charge somewhere (1)		
	Either but only one of first two marks can be lost if bond is clearly to oxygen		
	Arrow from H bond into the ring to produce either H^+ or H_2SO_4 and return to aromaticity (1)		

Question Number	Acceptable Answers	Reject	Mark
24(d)(i)	< 0° C/temperature too low: reaction too slow/insufficient energy to overcome activation energy (1) > 10° C/temperature too high: diazonium ion decomposes/produces phenol (1)	Will not take place	2

Question Number	Acceptable Answers	Reject	Mark
24(d)(ii)	⊕ N≡N		1
	Positive charge can be on either N Cl- may be given as well		
	ALLOW circle in benzene ring and hydrogens/carbons displayed		
	OR		
	N=N ⁺ Is acceptable providing charge is on the end N	Positive charge on wrong N	

Question Number	Acceptable Answers		Reject	Mark
24 (d)(iii)	Adds phenol in sodium hydroxide/OH ⁻ /alkali			3
	ALLOW 2-naphthol in sodium hydroxide/OH ⁻ /alkali	(1)		
	Correct structure for the -N=N- bond between 2 benzene rings	(1)		
	Remainder of molecule	(1)		
	which is either:		Tanana position of	
	$\langle \bigcirc \rangle$ -N=N- $\langle \bigcirc \rangle$ -OH		Ignore position of – OH group on the ring	
	ALLOW anionic form of —OH			
	OR if 2-naphthol is used it is:			
	N=N- HO			

Question Number	Acceptable Answers		Reject	Mark
24 (e)	First mark -SO ₃ are solvated / hydrated Can be drawn with polar H of war OR	ter	Just sodium ions attracted to	2
	Negative ion bonds with/attracted water	d to (1)	water	
	Nitrogen/oxygen atoms hydrogen-bonded (to water)			
	Can be drawn	(1)		

TOTAL FOR SECTION C = 20 MARKS

TOTAL FOR PAPER = 90 MARKS

Further copies of this publication are available from International Regional Offices at www.edexcel.com/international

Ofqual

For more information on Edexcel qualifications, please visit $\underline{www.edexcel.com}$

Alternatively, you can contact Customer Services at www.edexcel.com/ask or on + 44 1204 770 696

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

