

Mark Scheme (Results) January 2011

GCE

GCE Chemistry (6CH05/01)

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 0844 576 0025, our GCSE team on 0844 576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link: http://www.edexcel.com/Aboutus/contact-us/

Alternatively, you can speak directly to a subject specialist at Edexcel on our dedicated Science telephone line: 0844 576 0037

January 2011

Publications Code UA026203

All the material in this publication is copyright © Edexcel Ltd 2011

Section A (multiple choice)

Question Number	Correct Answer	Mark
1	D	1
Question Number	Correct Answer	Mark
2	С	1
Question	Correct Answer	Mark
Number	Correct Answer	Maik
3	В	1
Overtion	Courset Anguer	Mayle
Question Number	Correct Answer	Mark
4	C	1
Question	Correct Answer	Mark
Number		
5	В	1
Ouestion	Correct Answer	Mark
Question Number	Correct answer	Mark
6	A	1
Overstian	Courset Angular	Moule
Question Number	Correct Answer	Mark
7	D	1
Question	Correct Answer	Mark
Number		1
8 (a)	A	1
Question Number	Correct Answer	Mark
8 (b)	D	1
Question Number	Correct Answer	Mark
8 (c)	С	1
Question Number	Correct Answer	Mark
8 (d)	A	1
Ougstion	Correct Anguer	Monte
Question Number	Correct Answer	Mark
9 (a)	С	1
0		
Question Number	Correct Answer	Mark
9 (b)	A	1

Question Number	Correct Answer	Mark
9 (c)	D	1
Question Number	Correct Answer	Mark
10	С	1
Question Number	Correct Answer	Mark
11	A	1
		•
Question Number	Correct Answer	Mark
12 (a)	D	1
Question Number	Correct Answer	Mark
12 (b)	A	1
Question Number	Correct Answer	Mark
13	В	1
		•
Question Number	Correct Answer	Mark
14	D	1

TOTAL FOR SECTION A = 20 MARKS

Section B

Question	Acceptable Answers	Reject	Mark
Number			
15 (a) (i)	Electrophilic substitution (any order)		1

Question Number	Acceptable Answers	Reject	Mark
15 (a) (ii)	AlCl ₃ + CH ₃ CH(Br)CH ₂ CH ₃ \rightarrow AlCl ₃ Br ⁻ + CH ₃ C ⁺ HCH ₂ CH ₃ ALLOW CH ₃ CH(Br)CH ₂ CH ₃ \rightarrow Br ⁻ + CH ₃ C ⁺ HCH ₂ CH ₃ Ignore position of the + for this mark Ignore curly arrows in this equation (1)	AlCl₄¯	4
	Electron pair (curly arrow) from ring to positively charged second carbon of carbocation (1)		
	Structure of intermediate must include positive sign (1)		
	Electron pair from C-H bond reforms delocalized ring (1)		

Question Number	Acceptable Answers	Reject	Mark
15 (b)	Advantage Graphite catalyst easier to remove / separate / can be filtered off (from reaction mixture) / graphite can be re-used (1) Justification AlCl ₃ is soluble or graphite is insoluble /different state / different phase	Just graphite is a heterogeneous catalyst	2
	OR		
	Graphite can be re-used (1)		
	Mark independently		

Question Number	Acceptable Answers		Reject	Mark
15 (c) (i)	(Conc) nitric acid	(1)		2
	(Conc) sulfuric acid	(1)		
	penalise dilute once only			

Question Number	Acceptable Answers		Reject	Mark
15 (c) (ii)	Greater electron density in ring / ring is activated / more susceptible to electrophilic attack	(1)	Just more susceptible to attack	2
	Due to electron releasing / donating methyl groups	(1)		

Question Number	Acceptable Answers	Reject	Mark
15 (c) (iii)	Reduction ALLOW redox	Hydrogenation	1

Question Number	Acceptable Answers	Reject	Mark
15 (c) (iv)	NaNO $_2$ / sodium nitrite / sodium nitrate(III) & HCl (any strong acid) (1) Temp 0-10°C / less than 10°C / any quoted temperature between 0 -10°C / in ice bath (1) $C_6H_3(CH_3)_2 NH_2 + HNO_2 + HCl \rightarrow C_6H_3(CH_3)_2 N_2^+ Cl^- + 2H_2O$ (1) Add phenol dissolved in alkali (1) $(C_6H_3(CH_3)_2 N_2^+ Cl^- + C_6H_5OH) \rightarrow C_6H_3(CH_3)_2 N_2 C_6H_4OH + (HCl)$ (1) Mark given for correct organic product Allow correct organic product shown as -O instead of -OH	HNO ₃	5
	Mark independently		

Question	Acceptable Answers	Reject	Mark
Number			
16 (a) (i)	$(COOH)_2 \rightarrow 2CO_2 + 2H^+ + 2e^-$ (1)		2
	$MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{2+} + 4H_2O$ (1)		

Question Number	Acceptable Answers	Reject	Mark
16 (a) (ii)	$5(COOH)_2 + 2MnO_4^- + 6H^+ \rightarrow 10CO_2 + 2Mn^{2+} + 8H_2O$	Equation with	1
	ALLOW and this last	electrons left in	
	ALLOW multiples		
	ALLOW $5(COOH)_2 + 2MnO_4^- + 16H^+ \rightarrow 10CO_2 + 2Mn^{2+} + 8H_2O + 10H^+$		
	Ignore state symbols even if incorrect		

Question Number	Acceptable Answers	Reject	Mark
16 (a) (iii)	Moles of $MnO_4^- = 11.30/1000 \times 0.010 = 1.13 \times 10^{-4}$ (mol) (1)	TE for 5th mark if % is greater than 100%	5
	Moles of $(COOH)_2$ in 10 cm ³ = 1.13 x 10 ⁻⁴ x 5/2 = 2.825 x 10 ⁻⁴ (mol) (1)		
	Moles of $(COOH)_2$ in whole sample = $2.825 \times 10^{-4} $	Rounding errors once in first 4 marks	
	Mass of acid = $0.01412(5)x 90 = 1.27 g$ (1)	III TII SC 4 III al KS	
	% in leaves = 1.27/250 x 100 = 0.51 (%) (1)	Final answers not quoted to 2 dp	
	If ratio 5 : 2 is not used, maximum (4)	quoted to 2 dp	
	e.g. if ratio 2:5 is used then percentage in leaves = 0.08%		

Question Number	Acceptable Answers		Reject	Mark
16 (a) (iv)	± 0.05 cm ³	(1)		2
	$[(0.05 \times 2) / 11.3] \times 100 = 0.88\%$	(1)		
	ALLOW ±0.025 cm ³	(1)		
	[(0.025 x 2) / 11.3] x 100 = 0.44%	(1)		
	ALLOW TE for second mark			

Question	Acceptable Answers	Reject	Mark
Number			
16 (a) (v)	Any two from:		2
	Only one titration carried out (1)	Errors in technique	
		e.g. transfer errors	
	Leaves may contain other substances that MnO ₄		
	could oxidize/ react with (1)		
	Not all other additional description (4)		
	Not all ethanedioic acid extracted from leaves (1)		
	ALLOW temperature too low / below 60°C (1)		
	ALLOW COMPERATOR CONTRACTOR OF CONTRACTOR CO		
	Different amounts of acid from different leaves		
	(1)		

Question Number	Acceptable Answers	Reject	Mark
16 (a) (vi)	(Wearing gloves suggested as) ethanedioic acid is toxic / harmful OR	References to weak acid	2
	rhubarb leaves are toxic /harmful (1)	Rhubarb is toxic	
	(Unnecessary because) it is (very) dilute / present in small amounts (1)	Middle 13 coxic	
	ALLOW because is not absorbed through the skin		
	Second mark is independent of the first		

Question	Acceptable Answers	Reject	Mark
Number			
16 (a) (vii)	(Cloudiness due to) MnO ₂ (solid /precipitate) (1) Ignore colour of precipitate		2
	EITHER Suitable use of E^{θ} (+0.34V)		
	OR MnO ₄ ions are a strong enough oxidizing agent to oxidize Cl ions (1)		

Question Number	Acceptable Answers	Reject	Mark
16 (b) (i)	$(1s^2)2s^22p^63s^23p^63d^5$ (4s ⁰)	4s ² 3d ³	1

Question Number	Acceptable Answers	Reject	Mark
16 (b) (ii)	Octahedral		1

Question Number	Acceptable Answers	Reject	Mark
17 (a) (i)	(Ligands cause) d orbitals / sub-shell / sub level to split (1)	Description of flame test	3
	Some frequencies of light (energy) are absorbed (1)		
	To promote electrons (within d level / $d \rightarrow d$ transitions) (1)		
	ALLOW as alternative for second mark		
	Remaining light is transmitted / reflected (resulting in the colour seen)		
	Mark independently		

Question Number	Acceptable Answers	Reject	Mark
17 (a) (ii)	Concentrated HCl / HCl / HCl (aq) (1)	Dilute HCl	2
	Ligand exchange / replacement / substitution (1)		
	Mark independently		

Question Number	Acceptable Answers	Reject	Mark
17 (b) (i)	$ [Cr(H_2O)_6]^{3^+} + H_2O \Rightarrow [Cr(H_2O)_5(OH)]^{2^+} + H_3O^+ $ $ (1) \qquad (1) $ ALLOW $ [Cr(H_2O)_6]^{3^+} + H_2O \Rightarrow [Cr(H_2O)_5(OH)]^{2^+} + H_2O + H^+ $ $ (1) \qquad (1) $ ALLOW second mark for number of H_3O^+ ions related to incorrect complex e.g. $ [Cr(H_2O)_4(OH)_2]^{2^+} + 2H_3O^+ \text{ scores second mark} $ Ignore state symbols even if wrong		2

Question Number	Acceptable Answers	Reject	Mark
17 (b) (ii)	The concentration of oxonium / hydrogen ions is less in the $[Cu(H_2O)_6]^{2^+}$ / fewer hydrogen ions produced or reverse argument based on Cr ion (1) ALLOW $[Cr(H_2O)_6]^{3^+}$ / chromium ion deprotonates more easily if H_3O^+ shown in equation in (b) (i)	Just chromium complex more acidic The concentration of oxonium / hydrogen ions is greater in the [Cu(H ₂ O) ₆] ²⁺ / more hydrogen ions produced	2
	Because copper ion is 2+ whilst the chromium ion is 3+ / charge on copper ion is less than charge on Cr ion / less charge density on 2+ ions / Cr (3+) draws more electron density from the O-H bond (1)	Ligand exchange	

Question Number	Acceptable Answers	Reject	Mark
17 (c)	$Cr(OH)_3 / Cr(H_2O)_3(OH)_3$		1

Question Number	Acceptable Answers	Reject	Mark
17 (d)	NaOH is a (strong) base / alkali (1)		3
	$Cr(H_2O)_3(OH)_3$ loses (three) protons / undergoes further deprotonation	Chromium is amphoteric	
	OR		
	Cr(OH) ₃ is amphoteric (so reacts with strong bases) (1)		
	To reverse reaction 4 add (sulfuric) acid / H ⁺ / HCl (1)		

Question	Acceptable Answers	Reject	Mark
Number			
17 (e)	[Cr(NH ₃) ₆] ³⁺ + (edta) ⁴⁻ → [Cr(edta)] ⁻ + 6NH ₃ (1) Ignore missing brackets Ignore state symbols even if wrong During the reaction number of particles increases (2 to 7) / more moles of product than reactants AND entropy (of system) increases (1)	Entropy increases because a gas is produced only Just more products than reactants	2

TOTAL FOR SECTION B = 50 MARKS

Section C

Question	Acceptable Answers		Reject	Mark
Number			.,,	
18 (a) (i)	Mass of C in $CO_2 = 12/44 \times 0.88 = 0.24 \text{ g}$ Mass of H in $H_2O = 2/18 \times 0.216 = 0.024\text{g}$ (1	1)		4
	So mass of oxygen = 0.328 - (0.24 + 0.024) = 0.064 g (1	1)		
	Moles of C = 0.24/12 = 0.02 Moles of H = 0.024/1 = 0.024 Moles of O = 0.064/16 = 0.004 (1	1)		
	Ratio = simplest ratio = $5:6:1$ so $C_{10}H_{12}O_2$	1)		
	OR Moles of CO_2 0.88/44 = 0.02 Moles of H_2O 0.216/18 = 0.012 (1	1)		
	Moles of H = 0.024 therefore ratio of C:H is 5:6 (1 Can gain remaining two marks if they continue calculation as above	1)		
	OR $C_{10}H_{12}O_2 = 164$ (1	1)		
	Percentage carbon is 120/164 = 73.2% Percentage hydrogen is 7.3% Percentage oxygen is 19.5% (1	1)		
	Mass of carbon = 73.2 x 0.328/100 = 0.24 Mass of hydrogen = 7.3 x 0.328/100 = 0.024 Mass of oxygen = 19.5 x 0.328/100 = 0.064 (**	1)		
	Mass of carbon in CO_2 is $12/44 \times 0.88 = 0.24$ Mass of hydrogen in H_2O is $1/9 \times 0.216 = 0.024$ (*	1)		
	OR Mass of C in $CO_2 = 12/44 \times 0.88 = 0.24 \text{ g}$ Mass of H in $H_2O = 2/18 \times 0.216 = 0.024\text{g}$ (1)		
	So mass of oxygen = 0.328 - (0.24 + 0.024) = 0.064 g ((1)		
	Percentage of C = 0.24/0.328 = 73.2% Percentage of H = 0.024/0.328 = 7.3% Percentage of O = 0.064/0.328 = 19.5% (**)	1)		
	$C_{10}H_{12}O_2 = 164$ Percentage carbon is $120/164 = 73.2\%$ Percentage hydrogen is $12/164 = 7.3\%$ Percentage oxygen is $32/164 = 19.5\%$ (1)			

Question	Acceptable Answers	Reject	Mark
Number			
18 (a) (ii)	Add (small amount of) Br_2 / bromine (1) (Br_2 turns from orange / yellow / red-brown to) colourless / decolourised (1) OR	clear	2
	Add (small amount of) acidified KMnO ₄ (aq) (1) KMnO ₄ (aq) turns from purple/pink to colourless / brown (1)		
	OR		
	Add (small amount of) alkaline KMnO ₄ (aq) (1) KMnO ₄ (aq) turns from purple/pink to green (1)		

Question	Acceptable Answers	Reject	Mark
Number			
18 (a) (iii)	(Heat under) reflux		1
	OR		
	microwave (in sealed container)		

Question Number	Acceptable Answers	Reject	Mark
18 (a) (iv)	CH ₃ COCl / CH ₃ COO(COCH ₃) / ethanoyl chloride / ethanoic anhydride	Correct answer plus AlCl ₃ Acyl chloride	1
	ALLOW CH ₃ COOH / ethanoic acid and H ₂ SO ₄ / sulfuric acid / HCl / hydrochloric acid		

Question Number	Acceptable Answers		Reject	Mark
18 (b) (i)	steam source and r.b /pear-shaped flask (a clove buds) OR r.b /pear-shaped flask being heated and containing water (and clove buds) Condenser with water jacket, in correct poand direction of water flow Collection vessel -1 if apparatus does not work e.g. sealed	(1)	Conical flask if being heated with the clove buds in	3
	-1 for no joints or leaky joint			

Question	Acceptable Answers	Reject	Mark
Number 18 (b) (ii)	Mix organic solvent and oil-water mixture in a separating funnel then separate (1) Distil / rotary evaporate (to separate clove oil from organic solvent) (1) Add (anhydrous)CaCl ₂ / (anhydrous) MgSO ₄ / (anhydrous) Na ₂ SO ₄ / silica gel / calcium oxide to clove oil, (then filter / decant) (1) ALLOW name or formula of drying agent (Second and third marks in either order)	(Anhydrous) CuSO ₄ NaOH, sodium carbonate, sodium hydrogencarbonate calcium carbonate	3
	OR Add (saturated solution) of NaCl / sodium salt (1) Separate in a separating funnel (1) Add named drying agent to clove oil, (then filter / decant) (1)		

Question Number	Acceptable Answers	Reject	Mark
18 (c)	Choice with justification (1) e.g. 'yes it's reasonable as clove oil may be in use at harmful /toxic levels so we need to identify what that level is'	Yes because it's toxic	1
	'no as clove oil has been in use for many years in many ways so tests on animals not necessary to confirm it's safe to use at current levels' / no, as humans would have to consume large amounts	No, because of objections to animal testing in general	

Question Number	Acceptable Answers	Reject	Mark
18 (d)*	4 clear justified comparisons - 1 mark each ScCO ₂		5
	oil obtained seems purer (as colour closely matches that of eugenol)	produces pale yellow	
	requires no further purification, (others use solvent extraction)	Just no organic	
	greater yield per hour	solvent Only two hours /	
	yield 15.3g per 100g of buds	shorter time than other methods Just higher percentage yield	
	no organic solvent (because it is chlorinated) and so environmental problems / harmful / damage ozone layer	Just no organic solvent	
	requires high pressure so likely to be expensive / requires specialist equipment		
	Steam distillation steam distillation can be done using standard lab equipment /does not require high pressures		
	yield only 6.1g / 6.2g per 100g of buds	Higher yield than	
	Steam gives the least yield per hour	soxhlet	
	Soxhlet produces greater yield of oil but has a smaller percentage of eugenol /eugenol ethanoate		
	yield 16.8g per 100g of buds		
	(takes longer) but does not require high pressures		
	uses organic solvent (because it is chlorinated) and so environmental problems / harmful / damage ozone layer		
	Oil obtained seems least pure (4)		
	Synthetic route has several steps, each with a low yield clove buds are renewable but materials in synthesis are not / materials in synthesis likely to		
	be obtained from oil (1)	Cost of chemicals Yield is 35 %	

TOTAL FOR SECTION C = 20 MARKS

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481 Email <u>publications@linneydirect.com</u> Order Code UA026203 January 2011

For more information on Edexcel qualifications, please visit www.edexcel.com/quals

Edexcel Limited. Registered in England and Wales no.4496750 Registered Office: One90 High Holborn, London, WC1V 7BH