

Examiners' Report June 2016

GCE Chemistry 6CH05 01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>.

Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Giving you insight to inform next steps

ResultsPlus is Pearson's free online service giving instant and detailed analysis of your students' exam results.

- See students' scores for every exam question.
- Understand how your students' performance compares with class and national averages.
- Identify potential topics, skills and types of question where students may need to develop their learning further.

For more information on ResultsPlus, or to log in, visit <u>www.edexcel.com/resultsplus</u>. Your exams officer will be able to set up your ResultsPlus account in minutes via Edexcel Online.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk.

June 2016

Publications Code 6CH05_01_1606_ER

All the material in this publication is copyright © Pearson Education Ltd 2016

Introduction

This paper proved accessible to most candidates and provided them with the opportunity to demonstrate their knowledge and understanding of the key concepts in Unit 5 and the A level course as a whole. There was very little evidence of candidates having insufficient time to complete the paper.

The mean score for the multiple-choice questions in Section A was 15/20. Questions 1, 3 and 13 were the most straightforward, whilst questions 8, 10 and 18 were the most demanding.

The majority of candidates attempted the volumetric calculation with confidence and even if they made a slip it was possible to award them some marks as their working was set out clearly. Many candidates were able to deduce the steps for the synthetic route by giving correct reagents and intermediates. Candidates have improved their performance in the electrophilic substitution mechanism and only a few marks were lost due to slips and not thinking about the meaning of a curly arrow.

Some candidates did not read the questions carefully and their answers were incomplete or answering a similar question from a different paper. Candidates must continue to use the correct terminology in their answers as there was evidence of marks lost due to the use of imprecise language. Candidates should revise practical techniques carefully so they can describe them in a logical sequence. Candidates should also make sure that they know how to write balanced equations, particularly ionic equations.

Question 20 (a)

The vast majority of candidates selected the correct values to complete the table.

Question 20 (b)

The majority of candidates found this question straightforward, however, there were some who suggested using potassium hydroxide or potassium manganate(VII) in the salt bridge, a vanadium or graphite electrode and only included one of the vanadium ions in the solution in (i).

The three standard conditions were usually well-known, with just small numbers of candidates giving an incorrect temperature such as room temperature or 273 K or an incorrect concentration such as 1 mol.

(b) The standard electrode potential of $V^{3+}(aq) + e^- \implies V^{2+}(aq)$ is measured using the apparatus below.

(i) Identify, by name or formula, the substances needed in the salt bridge and the right-hand half-cell to measure the standard electrode potential.

(3)

(2)

A Salt bridge containing a solution of

excess vanadium ions (V3+)

B Electrode made of

vanadium

C Solution containing

V³⁺ LONS

(ii) State the **three** standard conditions needed for this measurement.

(b) The standard electrode potential of $V^{3+}(aq) + e^- \rightleftharpoons V^{2+}(aq)$ is measured using the apparatus below.

Take care when writing units.

(i) Identify, by name or formula, the substances needed in the salt bridge and the right-hand half-cell to measure the standard electrode potential.

(3)

A Salt bridge containing a solution of

KN03

B Electrode made of

M² Placinum

C Solution containing

V # 2+

(ii) State the three standard conditions needed for this measurement.

(2)

- concentration is Imoldm⁻³
- 298k temperature

All three conditions are correct in (ii) so 2 marks were awarded.

Remember to include all the ions, from the half-equation of the system you are using, in the solution.

Question 20 (c)

Many candidates gave excellent answers to this question by including all the relevant information and explaining it clearly. Other candidates found this item more challenging and they struggled to write a balanced ionic equation or calculate a correct $E_{\rm cell}$ value. They would benefit from more practise in these techniques. Some candidates worked out that iodide ions would reduce vanadium(V) to vanadium(IV) in acid solution and stopped there. They should have continued to show that iodide ions would not reduce vanadium(IV) to vanadium(III) to achieve full marks. Some candidates did not give the final oxidation state of vanadium, as asked, and just gave the formula of the ion, VO²⁺. Many candidates did not relate the sign of $E_{\rm cell}$ to the feasibility of the reaction, seemingly requiring the examiner to make this connection.

*(c) A solution containing iodide ions, I⁻, was added to an acidified solution containing vanadium(V) ions, VO₂⁺.

Predict the oxidation state of the vanadium ions left at the end of the reaction. Justify your prediction by calculating the E_{cell}^{\ominus} for any relevant reaction(s).

Write the ionic equation for any reaction(s) occurring. State symbols are not required.

$$\frac{VO_{2}^{+} + 2M^{+} + e^{-} + VO^{2^{+}} + M_{2}O}{2I^{-} + 2e^{-} + I_{2}} \qquad E^{*} = \frac{100}{0.94}$$

$$\frac{E_{om}^{0}}{E^{-} + 1.00 - 0.94}$$

$$\frac{E_{om}^{0}}{E^{-} + 0.46} \qquad eeckim feedsible}$$

$$\frac{VO^{2^{+}} + 2M^{+} + e^{-} + V^{3^{+}} + M_{2}O}{E^{*} = \frac{10.46}{0.34}}$$

$$\frac{E_{om}^{*} = \frac{10.46}{0.34} + 0.34}{E^{*} = \frac{10.46}{0.34} + 0.34}$$

$$\frac{E_{om}^{*} = \frac{10.46}{0.746} + 0.34}{E^{*} = \frac{10.46}{0.746} + 0.34}$$

 $\mathcal{E}^{\mathfrak{s}}_{\mathfrak{m}}$ = +0.80 -0.26 = +0.54 reaction gensible v 24 + 20 -E" = - 1.18 V E" = " U.S4 - 1.18 = -0.64 revition not provible Oxidention state up V=2 (Total for Question 20 = 11 marks)

Results **lus** Examiner Comments

This response scored 1 mark for the $E_{\rm cell}$ value for the first reaction. The candidate could have scored

equation for the reaction. The remaining values are incorrect so no further marks could be awarded.

another mark if they had written the overall ionic

ResultsPlus

Read the question carefully and make sure

Examiner Tip

that you answer all parts of it.

Revise how to calculate E_{cell} values.

*(c) A solution containing iodide ions, I⁻, was added to an acidified solution containing vanadium(V) ions, VO₂⁺.

Predict the oxidation state of the vanadium ions left at the end of the reaction. Justify your prediction by calculating the E_{cell}^{\ominus} for any relevant reaction(s).

Write the ionic equation for any reaction(s) occurring. State symbols are not required.

2I- -> Ze+ I2 (-0.54V) (5) $V_{02}^{+} + 2H^{+} + e^{-} \rightarrow V_{02}^{+} + H_{20} (+1.00)$ 2102+ + 4H+ +2E- -> 2102+ + 2H20+22+ I2 . As Eccle is a positive Value the Reaction will occur. A Vanadium will have an oxidation State of 4t at the end **Results**Plus **Results**Plus **Examiner Comments Examiner Tip** This is an example of a common response that scored When you are asked to predict the final 3 marks. The candidate has correctly given the overall oxidation state of ions left in a reaction, equation, final oxidation state and E_{cell} value for the you need to include a reason why they reduction of vanadium(V) to vanadium(IV) but they cannot change any further. have not shown that vanadium(IV) cannot be reduced any further.

*(c) A solution containing iodide ions, I⁻, was added to an acidified solution containing vanadium(V) ions, VO₂⁺.

Predict the oxidation state of the vanadium ions left at the end of the reaction. Justify your prediction by calculating the E_{cell}^{\ominus} for any relevant reaction(s).

Write the ionic equation for any reaction(s) occurring, State symbols are not required.

(5) -2 +2e 0.54 V V0++24 cann reduced solution with ons th en on. Plus **Examiner Comments Examiner Tip**

This response scored 4 marks. The candidate has given the ionic equation for the reduction of vanadium(V) to vanadium(IV) ions, calculated the E_{cell} value, shown that vanadium (IV) cannot be reduced to vanadium(II) ions and clearly related the feasibility of the reactions to the sign of E_{cell} . However, they have just given the formula of the ions left in solution and not given the oxidation state of vanadium in these ions.

Read the question carefully to make sure that you have included answers to all parts.

Question 21 (a) (i)

Many candidates found this item difficult. Some mis-read the question and thought that it referred to high resolution proton nmr spectra so they wrote about different splitting patterns. Some thought that there would be a different number of peaks in the spectra and others tried to work out the chemical shift values. Candidates who worked out the peak ratios usually scored 2 marks.

(i) Explain how the **low** resolution proton nmr spectra of these two amino acids differ. (2) hey will have the same number of peaks each of the peaks mil different splitting pattern. Sizes of be different in different positione. **spirit Examiner Comments Examiner Tip** This answer scored 0. The candidate has stated that Questions using the command word the sizes of the peaks will be different but has not 'explain' require you to give reasons for explained how they will be different. The comment vour answers. about the splitting patterns is irrelevant as this question is about low resolution proton nmr spectra where the splitting is not seen. (i) Explain how the **low** resolution proton nmr spectra of these 4 wo amino acids differ.

- · There will be both 4 different peaks at these two non spectra.
- · But in spectrum for 2-aminopropanar acids the height ratio

of the 4 peaks are = 1=1=2=3.

· in spectrum for z anihoproponoic acid, the height ratio of the 4 peaks or is = 1= 2=2=2.

Results Plus Examiner Comments

This answer scored 2 marks. The candidate has shown clearly how the spectra differ due to the different ratios of the peaks by giving the actual values.

When you are asked for a difference between two things, refer to both in your answer.

Question 21 (a) (ii)

The majority of candidates gained a mark for an acceptable reason why 3-aminopropanoic acid is not chiral, with most of them stating that there is no carbon atom with four different atoms or groups attached. Some just stated that there is no chiral carbon atom, without explaining what this means. A few candidates thought that 3-aminopropanoic acid is chiral.

(ii) Explain whether or not 3-aminopropanoic acid is chiral. (1)It is a chiral carbon because it contains 4 different functional groups. **Results Plus Results**Plus **Examiner Comments Examiner Tip** This candidate must have looked at the structure Read the question carefully and make sure of 2-aminopropanoic acid as there is no carbon that you refer to the correct structure. atom in 3-aminopropanoic acid that has four different groups. This response scored 0.

(ii) Explain whether or not 3-aminopropanoic acid is chiral.

It is not chiral as no one carbon has bonds we three different functional groups

This response scored 0 as the candidate has referred to three different groups instead of four.

Revise optical isomerism.

Question 21 (a) (iii)

Many candidates scored 2 marks for this item, with the most common errors being the omission of water as a product in the second equation and not including the charges at the correct ends of the molecules. A small number of candidates just gave the two products without writing equations so they scored 1 mark if the two structures were correct. A few candidates used the wrong amino acid but were awarded 1 mark if both equations were correct.

OH⁻ ions

This is an example of a common response that scored 1 mark. The candidate has given the structures of the two products but has not balanced the second equation by adding water as a product.

ResultsPlus

Examiner Comments

OH⁻ ions

Results Plus Examiner Comments This response scored 1 mark for the two correct products.

The question asks you to write ionic **equations** so you can only score full marks if you follow this instruction.

Question 21 (a) (iv)

This item was well-answered by many candidates. Some candidates drew a dipeptide instead of two repeat units. Other common errors included: not drawing two repeat units, omitting the extension bonds, including an extra oxygen in the amide group and using 2-aminopropanoic acid.

(iv) Draw two repeat units of the polymer formed when 3-aminopropanoic acid polymerizes.

(iv) Draw two repeat units of the polymer formed when 3-aminopropanoic acid polymerizes.

(iv) Draw two repeat units of the polymer formed when 3-aminopropanoic acid polymerizes.

Question 21 (b) (i)

The reagents and conditions for the formation of the diazonium compound were generally well-known. The common errors included: using sodium nitrate instead of sodium nitrite, giving incorrect formulae and giving an incorrect temperature or range of temperatures. It was not uncommon to see a temperature of 5°C and heat under reflux. This additional incorrect statement would negate the condition mark.

(i) Give the reagents and condition for Step 1. (2) Sodium intrate and hydrochloric acid, heat to 500 55°C **Results**Plus **Examiner Comments Examiner Tip** This response scored 0. The candidate has just Learn the reagents and conditions for written sodium nitrate instead of sodium nitrate(III) the reactions in the specification. or sodium nitrite. The temperature is incorrect and looks as if the candidate has confused this reaction with the nitration of benzene.

(i) Give the reagents and condition for **Step 1**.

NaNO, and concentrated HCI **Results**Plus **Examiner Comments Examiner Tip** This answer scored 0 as the formula of sodium nitrite If you use formulae, they must be is incorrect. It should be NaNO₂. correct. (i) Give the reagents and condition for Step 1. (2) rite & come. Hat jum m under refus **ResultsPlus Examiner Comments Examiner Tip**

This response scored 1 mark. The reagents are correct but this reaction needs a low temperature, not heat. Learn the correct condition for each reaction.

(2)

Question 21 (b) (ii)

Many candidates were able to apply their knowledge of azo dye formation to this example of Sunset Yellow. Some candidates included an extra OH group or methyl group on the benzene ring.

(ii) Draw the structure of the reagent needed for Step 2.

(ii) Draw the structure of the reagent needed for Step 2.

(1)

(1)

This answer scored 0 as there is an additional OH group on the top benzene ring.

the question.

Question 21 (b) (iii)

Many candidates did not realise that the double bond between the two nitrogen atoms has restricted rotation in the same way as C=C. Some candidates thought that there were two different groups attached to each nitrogen atom, whereas the second group is effectively a lone pair of electrons. Quite a lot of candidates thought that the benzene rings restrict rotation. Some candidates did not understand geometric isomerism and discussed structural or optical isomerism.

(iii) Explain why Sunset Yellow can exist as geon	netric isomers.		(1)
The benzone ring acts like a	double	bond	and
notation is restricted around	the rin	9	
Results lus Examiner Comments This is an example of a common incorrect answ attached to the nitrogen atoms by single bonds	ver, scoring 0. Th and these bond	e benzene s can rotat	rings are e.
(iii) Explain why Sunset Yellow can exist as geom	etric isomers.		(1)
Mis is because the	$\mathcal{N} = \mathcal{N}$	ar	have
the groups attached	as	Cis	05
trais, showing ger	Metric	ison	reserv.
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	*****	

Results Plus Examiner Comments

This canidate has realised the N=N is important in giving geometric isomers but has not explained why.

It is the lack of rotation around a bond that can give rise to geometric isomers.

(iii) Explain why Sunset Yellow can exist as geometric isomers.

more is barrier to rotation or restricted rotation due to berzene ring. NEN more is restricted totation around cost build on C=C bond and each arow was 2 dipporent groups attached to it. Jus Result

Examiner Comments

This response also scored 0. The candidate is familiar with geometric isomerism around C=C but they have not applied that to this example.

Read the question carefully and apply your knowledge to the specific example given.

(1)

Question 21 (b) (iv)

Although there were some excellent descriptions of recrystallisation, there were many that were poor as they had the steps in the wrong order and they were contradictory. Candidates should revise practical techniques such as this one carefully and make sure that they understand what is happening at each stage. Some candidates just added ethanol to the impure sample without mentioning that the solid needs to be dissolved in the minimum amount of hot ethanol. Another common error was just to add the solution or the crystals to an anhydrous salt to dry them. However, the use of an anhydrous salt in a desiccator to dry slightly damp crystals is a good technique. Some candidates thought that Sunset Yellow was a liquid, even though the question stated that it is a solid, so described distillation and solvent extraction.

*(iv) Describe the essential steps of the method that you would use to prepare a pure, dry sample of the solid Sunset Yellow from an impure sample of the food colouring. You may assume that ethanol is a suitable solvent for this method.

We using gilter Poper worsh the solid with themal. Using a low Pressure device which looks like Then Pressure Pour the liquid Solution through the top a the fittered sold in the top, drown air out of the Side and ethonol with dissolved impurities is in the 4 Mo Istru Glosk. Then have the remaining Solid to dry.

Examiner Comments

This response scored 0. The candidate has some idea about the process but none of the points are completely correct. They also do not know the correct name for the apparatus used.

Use the correct names for apparatus. Learn how to recrystallise an impure solid. *(iv) Describe the essential steps of the method that you would use to prepare a pure, dry sample of the solid Sunset Yellow from an impure sample of the food colouring. You may assume that ethanol is a suitable solvent for this method.

- Enstly Firstly dissolve the impure Sunset Yellow, in the minimum amount of hot solvent to ensure the yield is maximum. Next Filter the solution whilst shill hot, to remove any insoluble impurities Next leave the filtered solution to crystalize, and Finally wash the Sunset Yellow crystals with cold water, to remove any soluble impurities

This response has scored 2 marks. The first two points from the mark scheme are correct. The candidate has mentioned leave it to crystallize but should have mentioned cooling. They have also not filtered the mixture to separate the crystals and a method of drying them.

The question asked for a dry sample of Sunset Yellow so a method of drying the crystals should be mentioned.

(4)

*(iv) Describe the essential steps of the method that you would use to prepare a pure, dry sample of the solid Sunset Yellow from an impure sample of the food colouring. You may assume that ethanol is a suitable solvent for this method.

- Place inpure sample (of known mass) in ethanol
Small amount of ethanol used to ensure saturation.
- Heat man mixture.
- Filter hot solution to remove the insoluble impurilies.
- Cool solution, get crystalleation of pure sample.
- Filter the ceal solution.
- Warn the sound with a little amount of cold
ethand (excession udissolve solid)
- Dry usig filter papers

Results Plus Examiner Comments This response scored 3 marks. The candidate has placed the impure sample in a small amount of ethanol and then heated it. This is not sufficient for the mark. The impure sample must be dissolved in the minimum amount of hot ethanol. The remaining steps are correct.

(4)

Question 21 (b) (v)

The majority of candidates scored a mark for measuring the melting temperature of the sample and comparing it with the Data Book value. Some candidates just mentioned measuring the melting temperature but did not mention the comparison or stating that it would be sharp, so they did not score a mark. A small number of candidates mentioned various types of spectroscopy and a few mentioned measure the boiling temperature.

(v) Suggest how you could check that a sample of Sunset Yellow is pure. (1)is a plue sample heating it and it bu using a thermometer. **Results**Plus **Examiner Comments Examiner Tip** A pure substance will have a sharp melting This response scored 0. Just measuring the temperature and it will be close to the Data melting point is not sufficient. Book value.

(v) Suggest how you could check that a sample of Sunset Yellow is pure.

Chromatography

State what the chromatography will show if the sample is pure, for example, it will only produce one spot on the chromatogram.

Question 21 (c)

There were many excellent responses for the synthesis of benzamide from phenylmethanol. Some candidates were less successful and tried different reactions that would not work, for example converting benzoic acid into benzoyl chloride by the addition of hydrochloric acid, or converting benzoic acid into benzamide in one step by adding ammonia. Some candidates confused benzamide with phenylamine, ignoring the C=O bond and they tried to reduce nitrobenzene using tin and hydrochloric acid.

(c) Explain how a chemist could use phenylmethanol to synthesise a sample of benzamide in three steps.

(c) Explain how a chemist could use phenylmethanol to synthesise a sample of benzamide in three steps.

phenylmethanol

Include the reagents for the steps in the synthesis and draw the structures of **all** the intermediates.

(c) Explain how a chemist could use phenylmethanol to synthesise a sample of benzamide in three steps.

phenylmethanol

benzamide

NH,

Include the reagents for the steps in the synthesis and draw the structures of **all** the intermediates.

Question 22 (a)

Many candidates could give the electronic configurations of Cu²⁺ and Zn²⁺ but a significant minority just removed 3d electrons from the atoms and left the 4s electrons. The explanation was often correct but some candidates need to think more carefully about the terminology as they used the terms orbital(s), shell and sub-shell interchangeably without showing any understanding of the differences between them. For example, some wrote that zinc only forms an ion with a full 3d orbital instead of full 3d orbitals. The candidates who wrote about the 3d sub-shell were more successful than those who wrote about the 3d orbitals.

(a) Complete the electronic configurations of the Cu²⁺ ions and Zn²⁺ ions and hence explain why copper is classified as a transition metal but zinc is not.

Cu ²⁺ [Ar] 3d9		19
Zn^{2+} [Ar] 3d 10 4s ²		30
In not classified as has all a	2 d abstals occupied	
El there are no valent e	electrons for # electron	
pain to be accepted		
Results Plus Examiner Comments	Results lus Examiner Tip	'
This response scored 0. The electronic configuration for the zinc ion is incorrect as there should not be any 4s electrons. The explanation is incomplete as it does not refer to a zinc ion and there is no mention of why copper is classified as a transition metal.	Make sure you understand the meaning of a transition metal and use correct terminology in your answer.	

(2)

(2)

(a) Complete the electronic configurations of the Cu²⁺ ions and Zn²⁺ ions and hence explain why copper is classified as a transition metal but zinc is not.

[Ar] 3d 4s Cu²⁺ [Ar] 32[°] Zn²⁺ Copper can form one or more a stable ion with a parbally filled 3d-subshell Nereas zinc cannot. **Examiner Comments Examiner Tip** This response scored 1 mark. The electronic configuration Remember that transition metals form of the copper ion is incorrect, however, the explanation ions by losing the 4s electrons first.

refers to both copper and zinc so was awarded a mark.

(a) Complete the electronic configurations of the Cu²⁺ ions and Zn²⁺ ions and hence explain why copper is classified as a transition metal but zinc is not.

	-							(2)
_Cu ²⁺	[Ar]	3d ⁹	45 ⁰					
⊌ Zn²⁺	[Ar]	3010	45 ⁰					
	Cu ch	ssified	25 p h	montran	metal	becou.	e the or mo	u of its
444444444	Stable	ions	have a	partial	ly filla	d d-or	bitals.	**************************************
_	But 2	Zn do	esn't ha	n my	stable	rons h	mp pritil	y filled
	d subs	hell.	UA C	Zn^{2+1}	nas fu	11 d-	orbitals.	v
	Res	ultsP	us			2	Result	IIS
	Examin	er Comm	ients				Examiner Tip	

This is a correct answer worth 2 marks.

Give a full explanation, as in this example, using the correct terminology.

Question 22 (b)

Many candidates found this question difficult. If they realised that silver is formed then they should work out that the silver ions are reduced so the copper(I) ions are oxidised to copper(II).

(b) Some photochromic glasses contain silver(I) and copper(I) chlorides.

Explain, with the aid of an equation, why these photochromic glasses go darker in sunlight.

(2)

Agal Light Agt + CL The silver ions have a dark colour so the more UN light to and the dasher Agt is formed slasses are exposed to, the more Lense becaus. 211 **Examiner Comments Examiner Tip** This response scored 0. The candidate has just shown Make sure that any equation you write silver chloride split up into silver and chloride ions so includes all the reactants mentioned in there is no redox reaction and the equation does not the question. include copper(I) chloride.

(b) Some photochromic glasses contain silver(I) and copper(I) chlorides.

Explain, with the aid of an equation, why these photochromic glasses go darker in sunlight.

AgC(+ cu -> cucl + Ages) light (UV) contalyses this process and produces Ages, which is dark. **Results**Plus **Examiner Comments Examiner Tip** Read the question carefully. This question tells This response scored 1 mark for the production you to start with copper(I) chloride so that of silver. should be a reactant in the equation, not a product.

(2)

(b) Some photochromic glasses contain silver(I) and copper(I) chlorides.

Explain, with the aid of an equation, why these photochromic glasses go darker in sunlight.

Question 22 (c)

The tetrachlorocuprate(II) ion has a square planar shape in some crytalline solids and although the question told the candidates that this ion has the same shape as the cis-platin complex, they were also awarded a mark for a tetrahedral shape that they may have remembered from an aqueous solution. If they drew a tetrahedral shape, it had to be an attempt at a 3-dimensional shape with a wedge coming forwards and a dotted line or wedge going into the paper. The majority of candidates knew the type of bonding although some wrote ionic or metallic and a few candidates misread the question and gave the name of the shape or the bond angle.

(c) Copper forms a complex ion with the formula $[CuCl_4]^{2-}$. This has the same shape as $[Pt(NH_3)_2Cl_2]$.

Draw the shape of the $[CuCl_4]^{2-}$ ion and state the type of bonding between the ligands and the metal ion.

Shape

 $c_1 - c_{1} - c_1$

Bonding

(2)

(c) Copper forms a complex ion with the formula [CuCl₄]²⁻. This has the same shape as [Pt(NH₃)₂Cl₂].

Draw the shape of the $[CuCl_4]^{2-}$ ion and state the type of bonding between the ligands and the metal ion.

Question 22 (d) (iii)

Candidates are more familiar with explaining why solutions of transition metal ions are coloured so some of them struggled to explain why this solution is colourless. The majority of candidates did realise that it was related to the full 3d sub-shell of the copper(I) ion but a lack of precision in the use of scientific terminology meant that only a small minority scored the second mark. The common incorrect answers included: the d sub-shell does not split, the splitting has too large an energy gap, the light absorbed is outside the visible spectrum and a discussion about electrons not being able to be promoted to a higher energy level, without specifying which energy level.

(iii) Explain why the $[CuCl_2]^-$ ions are colourless.

(iii) Explain why the [CuCl₂]⁻ ions are colourless.

(2)The Cut jon has a complete 3d orbitals and no electrons in its 4s orbital. This means that no splitting of orbitals and subsequent promotion of electrons can take place. So no Be promotion of electrons, so no adour is light is absorbed observed.

(iii) Explain why the [CuCl₂]⁻ ions are colourless.

(2) because the Cu colourlass 25 has ts oxidation ON 2 50 pled oni (2 2) 20 wor electron monstant Mi I 1 50) There nD (m if \Im :5 000

This is an example of a response that scored 2 marks. The candidate has stated the electronic configuration and explained why the solution is colourless.

Try to give a clear explanation as in this example.

Question 22 (d) (i)-(ii)

Many candidates found it difficult to construct a correct equation for the reaction described in (i), even though there were five equations that were acceptable. A common error was to omit the hydrochloric acid or the chloride ions from it or to include hydrogen gas as a product. Candidates should remember to balance equations by considering the charges as well as the atoms. Most candidates could explain the meaning of disproportionation but the majority could not apply it to this example, with many stating that this was disproportionation. This indicates that they had learnt a definition but not understood it. They should have explained why the reaction was the reverse of disproportionation.

- (d) The [CuCl₂]⁻ ion is formed by boiling a solution of copper(II) chloride with copper turnings and concentrated hydrochloric acid.
 - (i) Write an equation for this reaction. State symbols are not required.

(1)

auci, + ncl + au -> Eauci2]

(ii) State the meaning of the term **disproportionation** and explain whether or not this reaction to form the [CuCl₂]⁻ ion is a disproportionation reaction.

(2)

Disproportionation is when a reaction molecule is oxidised

and reduced at me sume time.

This response scored 0 for both parts. The equation in (i) has the potential to be correct as all the correct species are given as reactants but H⁺ ions are missing as a product and the equation is not balanced. This definition of disproportionation is not acceptable as it is not precise enough. The molecule is not oxidised and reduced but atoms within it.

Make sure you understand the meaning of disproportionation. It is better to write about the simultaneous oxidation and reduction of a single species rather than a particular type of particle.

- (d) The [CuCl₂]⁻ ion is formed by boiling a solution of copper(II) chloride with copper turnings and concentrated hydrochloric acid.
 - (i) Write an equation for this reaction. State symbols are not required.

(1)(12+ (10 + 2)(1 -)2[(1)(2) 7)4+

(1)

(ii) State the meaning of the term **disproportionation** and explain whether or not this reaction to form the [CuCl₂]⁻ ion is a disproportionation reaction.

(2) rtionation recetion I shen an element A 110001 allo Hono rt oro lun S Net

- (d) The [CuCl₂]⁻ ion is formed by boiling a solution of copper(II) chloride with copper turnings and concentrated hydrochloric acid.
 - (i) Write an equation for this reaction. State symbols are not required.

and + an +2Ha =>2 and

(ii) State the meaning of the term **disproportionation** and explain whether or not this reaction to form the [CuCl₂]⁻ ion is a disproportionation reaction.

Disproportionation is when a species its simutaneously exidised and reduced. This is not a d ation reaction as the species being the reduced 15 the 2 and the species being trid in the CuCl is th and In are not the same spe 67 not in the same acidation state so it is not disproportionation

(1)

(2)

Question 22 (e) (i)

It was disappointing that less than half of the candidates scored a mark for this straightforward equation. Some candidates wrote a non-ionic equation, even though ionic is printed in bold in the question and others showed ions but included the spectator ions. Some did not balance the equation, either by omitting two hydroxide ions or forgetting to add water if they used the hexaaqua complex. A significant minority omitted one or more state symbols. Candidates would benefit from more practice in writing equations for the reactions in the specification.

(i) Write the **ionic** equation for the reaction of copper(II) sulfate solution with aqueous sodium hydroxide. Include state symbols.

(1)

(1)

written a correct ionic equation but the state symbol of copper(II) hydroxide is incorrect.

Use the information given in the question to help you to work out state symbols. You are told that copper(II) hydroxide is a precipitate, so the state symbol must be (s).

(i) Write the **ionic** equation for the reaction of copper(II) sulfate solution with aqueous sodium hydroxide. Include <u>state</u> symbols.

$$Cu(aq) + OH(aq) \rightarrow [Cu(H_2O)_4(OH)_2](s)$$

Results Plus Examiner Comments

This response scored 0. The candidate has written an ionic equation and included state symbols, but the equation is not balanced. There should be two hydroxide ions and there are four water molecules on the right but none on the left.

Examiner Tip

All equations must be balanced.

This candidate has underlined the important words from the question to help them to remember what to include in the answer.

Question 22 (e) (ii)

This was a straightforward question that the majority of candidates got right. Common incorrect answers included: deprotonation, reduction and just substitution.

Question 22 (f) (i)

The majority of candidates could state what is meant by a bidentate ligand. Some candidates thought that there are two ligands attached to the metal ion and some just stated that the ligand has two lone pairs of electrons without describing what they do.

(i) State what is meant by the term **bidentate**. (1)ligand has 2 lone pairs

Results Plus Examiner Comments This response does not go far enough to be awarded a mark. It needs to state that the lone

pairs are used to form bonds to the metal ion.

Results Plus Examiner Tip

Give more detail in your answers.

(i) State what is meant by the term **bidentate**.

(1)Has too sets of Lone Paiers that Can form dative Covalent bonds. with metal in tsPlus **Examiner Tip Examiner Comments** This is an example of a good answer that scored Give the full meaning of any terms you are 1 mark. asked about.

Question 22 (f) (ii)

Many candidates gave good answers that scored 2 marks. Some candidates had the right idea but lost a mark by using poor terminology, for example, referring the 4 molecules increasing to 7 molecules when there is a mixture of ions and molecules in the equation. A small minority just went as far as stating there is an increase in disorder and did not mention entropy in their answers.

(ii) Explain, in terms of entropy, why the reaction takes place. 4 moles goes to 6 moles of productor. Therefore there's an increased degree of disorder.

This response scored 0. There are 7 moles of particles, not 6, on the right of the equation. The disorder does increase but this is not sufficient for the second mark as there is no mention of entropy.

Check the number of particles carefully.

(ii) Explain, in terms of entropy, why the reaction takes place.

(2)· Belause in the Rocking going pon 4 moles of reallants to 7 moles of products moles increasing · This means that DS system in positive of it gets mort hipordered Entopy mayes Plus S Kesu **Examiner Comments Examiner Tip** This is an example of a good answer that scored Give full explanations, as in this example. 2 marks.

Question 23 (a)

The majority of candidates knew that paracetamol contains an amide group. Incorrect answers included amine and ketone.

Question 23 (b) (i)

Many candidates could identify the matching conjugate acid-base pairs, although a significant minority just wrote acid or base on the lines and did not attempt to link the pairs using lines or numbers. A small minority wrote the formula of the conjugate acid or base on the line but did not state which was the acid or base.

(i) In a typical nitration of an arene, the electrophile is formed as shown below.

 $H_2NO_3^+ \rightarrow H_2O + NO_2^+$

acid - > accepto Rule -> accepto te pairs in E-

Equation 2

Identify the acid-base conjugate pairs in **Equation 1**. Write your answers on the dotted lines under the equation.

(1)

(i) In a typical nitration of an arene, the electrophile is formed as shown below.

HNO_3	+	H_2SO_4	\rightarrow	$H_2NO_3^+$	+	HSO_4^-	Equation 1
Base 1		Acid 1		Acid 2		800e 2	

 $H_2NO_3^+ \ \rightarrow \ H_2O \ + \ NO_2^+$

Equation 2

Identify the acid-base conjugate pairs in **Equation 1**. Write your answers on the dotted lines under the equation.

(1)

Question 23 (b) (ii)

Many candidates drew clear mechanisms for the nitration of phenol and scored full marks. Some candidates just showed the nitration of benzene or gave the mechanism for the formation of 2-nitrophenol so they lost a mark. Most candidates drew the first curly arrow to the NO_2^+ ion correctly, but a significant number lost a mark for a poorly drawn intermediate as the 'horseshoe' was pointing to the wrong carbon atom, the positive charge was not inside the horseshoe or they left a positive charge on the NO_2 group as well as in the centre of the ring. Some candidates lost the last mark as they started the curly arrow from the hydrogen atom instead of the C-H bond.

(ii) Give a mechanism for the nitration of phenol by NO₂⁺ to form 4-nitrophenol.

(ii) Give a mechanism for the nitration of phenol by NO_2^+ to form 4-nitrophenol.

(ii) Give a mechanism for the nitration of phenol by NO_{2^+} to form 4-nitrophenol.

Question 23 (b) (iii)

Many candidates gave clear explanations that scored 2 marks. Some candidates just referred to the OH group and didn't specifiy that it is the lone pair of electrons on the oxygen that overlap with the delocalised electrons in the benzene ring.

(iii) Explain why phenol is nitrated much more readily than benzene. (2) The on group in the phenol phath matic memory is more seattine. More readtine. This is answer is lacking in detail and scored 0. (2) Menol is more readily than benzene. (2) Menol is more readily than benzene. (2) Menol is more readily than benzene.

(iii) Explain why phenol is nitrated much more readily than benzene.

Question 23 (b) (iv)

The majority of candidates knew that the conversion of a nitro group to an amine is a reduction reaction. Incorrect answers included hydrogenation and substitution.

(iv) State the type of reaction taking place in Step 2.

Electrophilic substitution

Results Plus Examiner Comments This incorrect answer scored 0. Results Plus Examiner Tip Learn the names of the types of reaction in the specification.

(1)

(1)

Question 23 (b) (v)

Many candidates scored a mark by suggesting ethanoyl chloride or ethanoic anhydride as the reagent for this reaction. A small number thought that ethanoic acid reacts with amines to produce amides. A few candidates lost marks by giving a correct name with an incorrect formula or vice versa. If both are given, both must be correct.

(v) Suggest a reagent for Step 3.

ethensic acid.

· C TOPA + 1 -> MU

(v) Suggest a reagent for Step 3.

(1)Acy I chlonde 200 Examiner Comments This candidate knows that acyl chlorides react with amines to form amides, but the general name 'acyl chloride' is not sufficient here, you must state the actual acyl chloride that is needed for this reaction. This response scored 0. (v) Suggest a reagent for Step 3. (1) CH3 COCL 1 methanoy chloride **Results**Plus **ResultsPlus Examiner Comments Examiner Tip** This response scored 0. The formula is correct but If you give the name and formula of a the name is incorrect. substance, check to make sure that both are correct.

Question 23 (b) (vi)

This was one of the more challenging items on the paper. Many candidates did realise that there are hydrogen bonds between both molecules but few went on to explain that there will be intermolecular hydrogen bonding between 4-nitrophenol molecules but the intramoleular hydrogen bonding in 2-nitrophenol molecules will result in less intermolecular hydrogen bonding.

(vi) 2-nitrophenol has a melting temperature of 46 °C and 4-nitrophenol has a melting temperature of 114 °C.

Suggest, in terms of intermolecular forces, why these two compounds have different melting temperatures.

(2) 4-nitrophenol has more electrons, so more london forces, herefore more energy required to break mese bres. **lesuits Results Plus Examiner Comments Examiner Tip** This candidate has not realised that 2-nitrophenol Isomers have the same number of and 4-nitrophenol are structural isomers so they electrons. have the same number of electrons. This response scored 0.

(vi) 2-nitrophenol has a melting temperature of 46 °C and 4-nitrophenol has a melting temperature of 114 °C.

Suggest, in terms of intermolecular forces, why these two compounds have different melting temperatures.

	-	×.	
	- 3	1	
τ.	£		
۰.	_	ч г .	

4-nitophenol manage is able to form the hands hid open bonds where 2-nimpensi i only able to form dipole-dipole intersuction. Ar ser hand a comper, 4-nimphenol has a higher welly print Examiner Comments This response scored 0 as the candidate thought that only one of the isomers can form hydrogen bonds.

(vi) 2-nitrophenol has a melting temperature of 46 °C and 4-nitrophenol has a melting temperature of 114 °C.

Suggest, in terms of intermolecular forces, why these two compounds have different melting temperatures.

(vi) 2-nitrophenol has a melting temperature of 46 °C and 4-nitrophenol has a melting temperature of 114 °C.

Suggest, in terms of intermolecular forces, why these two compounds have different melting temperatures.

They have the same number of electrons so Van de Ward Fores are the same. However in 2-nitrophenol, the -NO2 group and -OH group rogen bonds within the molecule, whereas in 4-nitrophent, the groups - away so form hydrogen bonds between muleales. The hydrogen bands ore between molecules are strong and require a lot of energy to one come H-back withour molecules do not effect neltim temperature

(2)

Question 23 (c)

It was very pleasing to see how well candidates answered this unfamiliar redox titration. They were able to apply their knowledge of other redox systems to this question and many scored full marks. Candidates who were less successful were unable to write the overall equation for the reaction, used an incorrect mole ratio, did not work out the number of moles of 4-aminophenol in 100cm³ of solution or calculated an incorrect molar mass for paracetamol even though this was given in the question.

(c) Paracetamol can be hydrolysed to form 4-aminophenol and ethanoic acid.

The amount of 4-aminophenol produced can be determined using a redox titration. The half-equation for the oxidation of 4-aminophenol is given below.

The oxidizing agent is ammonium cerium(IV) sulfate and ferroin indicator is used to detect the end-point of the titration. During the reaction, the Ce⁴⁺ ions are reduced to Ce³⁺ ions.

(i) Write the overall equation for the reaction between Ce⁴⁺ ions and 4-aminophenol. $e^{4+} e^{-}$ C e⁴⁺ \longrightarrow C e³⁺ $\sqrt{2}$

(1)

(ii) In an experiment, 0.500 g of a tablet containing paracetamol was hydrolysed and the solution was made up to 100 cm³.

20.0 cm³ portions of the resulting solution were titrated with 0.100 mol dm⁻³ ammonium cerium(IV) sulfate solution.

The mean titre was 12.60 cm³.

Calculate the percentage, by mass, of paracetamol in the tablet.

mol of ammonium cerium (IV) sulface

$$\frac{12.6}{1000} \times 0.1 = 1.26 \times 10^{-3} \text{ mol}$$
therefore mol of paracetamol = 1.26×10^{-3}
(1.26×10^{-3}) $\times 5 = 6.3 \times 10^{-3}$
mol in 100 cm^3 of solution
molar mass = 151

- (i) This scored 0 as the candidate has omitted the double bond between the carbon and the nitrogen.
- (ii) This scored 3 marks. The number of moles of Ce⁴⁺ is correct, but the candidate has used a mole ratio of 1:1 instead of 1:2 as shown in their equation. The multiplication by 5 is correct, as is that by 151. This gives a greater mass than that of the tablet so is obviously incorrect so the candidate did not go any further.

If you get an answer that will give you more that 100%, you have done something wrong in the calculation so go back and check to see if you can find your error or omission.

(5)

(c) Paracetamol can be hydrolysed to form 4-aminophenol and ethanoic acid.

The amount of 4-aminophenol produced can be determined using a redox titration. The half-equation for the oxidation of 4-aminophenol is given below.

The oxidizing agent is ammonium cerium(IV) sulfate and ferroin indicator is used to detect the end-point of the titration. During the reaction, the Ce4+ ions are reduced to Ce3+ ions.

(i) Write the overall equation for the reaction between Ce4+ ions and 4-aminophenol. NHZ

(ii) In an experiment, 0.500 g of a tablet containing paracetamol was hydrolysed and the solution was made up to 100 cm³.

20.0 cm³ portions of the resulting solution were titrated with 0.100 mol dm⁻³ ammonium cerium(IV) sulfate solution.

The mean titre was 12.60 cm³.

Calculate the percentage, by mass, of paracetamol in the tablet.

Hol Ammonium Cerium (1V) Sulptie =
$$\frac{12.60}{1000} \times 0.1$$

= 1.26×10⁻³ mol
=> Mol 4 amino phenol = $\frac{1.26\times10^{-3}}{2} = 6.30\times10^{-4}$
=> Mol 4 aminophenol in 100 cm³ = $6.30\times10^{-4} \times 5$
= 3.15×10^{-3} mol
=> Mol Paracetemel = 3.15×10^{-3} mol
Mr Perocetanol = $139 \times 3.15\times10^{-3}$
= Mass Perocetanol = $139 \times 3.15\times10^{-3}$
= 122 a 0.438 g
 $\therefore \%$ by mass = $0.438 \times 100 = 87.6\%$

ResultsPlus

Examiner Comments

- (i) This scored 1 mark for the correct balanced equation.
- (ii) The first three steps are correct but the candidate has calculated an incorrect molar mass so the fourth mark is not awarded. However, the fifth mark can be awarded for a transferred error.

Explain your working clearly so you can be awarded most of the marks even if you make a slip in a calculation.

(5)

Question 23 (d) (i)

The majority of candidates could identify the correct chiral carbon atom in ibuprofen.

(d) (i) Identify the chiral carbon atom in ibuprofen with an asterisk (*).

Question 23 (d) (ii)

Many candidates misread the question and wrote a lot about the problems of producing a racemic mixture and that the unwanted isomer might be toxic, instead of concentrating on the problem of manufacturing a single isomer. Some candidates mentioned that the two isomers would need to be separated but did not comment on the difficulty of doing this. Some candidates thought that the use of plane polarised light would separate the isomers. More candidates scored the second mark as they suggested a suitable solution to the problem.

(ii) Suggest a problem in the manufacture of a single isomer of a chiral drug and describe a way that the pharmaceutical industry might overcome this problem.

(2) recenie mixture could be formed - the company would we to test if the product rotates the plane of plane-pdanised it does then its a single igner. **Examiner Comments Examiner Tip** This response has missed the point of the question Read the question carefully. and scored 0.

(ii) suggest a problem in the manufacture of a single isomer of a chiral drug and describe a way that the pharmaceutical industry might overcome this problem.

(2)Chiral Will produce two aptically active stereoisomers. due to attack from above a below plane. The yield of the desired isomer would therefore be reduced. To overcome this concentrations can be manipulated so a racenic mixture does not form **Examiner Comments Examiner Tip** This response scored 1 mark for the idea of a lower yield Learn about some ways in which a of the desired isomer since a mixture of two isomers single optical isomer can be produced. will be produced. Unfortunately just changing the concentrations will not prevent a racemic mixture from forming so the second mark could not be awarded. (ii) Suggest a problem in the manufacture of a single isomer of a chiral drug

(ii) Suggest a problem in the manufacture of a single isomer of a chiral drug and describe a way that the pharmaceutical industry might overcome this problem.

If they simple report the wixtue to penove the unmanred isomer in a racemic mixron, the yield would be low & (< 50%). They might over come this by Using a caraly is such as an enzyme, that only produce ONE of the sterio jones, increasing yield and aromeconony.

RecultsPlus

(2)

Question 23 (e)

The majority of candidates could suggest an environmental reason why the manufacturing process of ibuprofen was changed. The most common answers were that there would be less waste, a higher yield or less energy would be used. A few candidates just stated 'less pollution' but that was not specific enough to score a mark. Some candidates did not make their answer clear enough to know whether they were writing about the six-step or the three-step process.

(e) Ibuprofen was originally made in a six-step process but is now made in a three-step process.

Suggest a specific environmental reason why the manufacturing process was changed.

(1)pusses need fossil bhrn Examiner Comments **Examiner Tip** This is an example of an answer that scored 1 If you give more than the required number mark. More than one reason is given but they are of answers, make sure they are all correct, both correct so the mark can still be awarded. otherwise you will lose a mark.

Question 23 (f)

It was pleasing to see how many candidates could draw the anion and cation formed from ibuprofen and lysine. Some candidates lost a mark as they showed the charges outside of brackets instead of by the group that has the positive or negative charges. A few candidates lost both marks if they put charges by the correct atoms and then put additional charges outside of brackets. Some candidates were more confused and tried to react the ibuprofen and lysine together then add charges to them.

(f) Ibuprofen is not very soluble in water. It can be made into an ionic, soluble salt by reacting it with lysine.

Ibuprofen

Lysine

Draw the structures of **both** the cation and the anion in the soluble salt formed when ibuprofen reacts with lysine.

(2)

(f) Ibuprofen is not very soluble in water. It can be made into an ionic, soluble salt by reacting it with lysine.

Ibuprofen

Draw the structures of **both** the cation and the anion in the soluble salt formed when ibuprofen reacts with lysine.

Results Plus

This candidate has put too many charges on the ions so scored 0. The charges should be placed alongside the appropriate atoms and it is acceptable to put the ions in brackets but these structures show double charges and are incorrect. A mark would have been allowed for the cation with both amine groups protonated.

(f) Ibuprofen is not very soluble in water. It can be made into an ionic, soluble salt by reacting it with lysine.

Ibuprofen

Lysine

Draw the structures of **both** the cation and the anion in the soluble salt formed when ibuprofen reacts with lysine.

(f) Ibuprofen is not very soluble in water. It can be made into an ionic, soluble salt by reacting it with lysine.

Draw the structures of **both** the cation and the anion in the soluble salt formed when ibuprofen reacts with lysine.

(2)

Paper Summary

On the basis of their performance on this paper, candidates are offered the following advice:

- Remember that AS content will be required when answering A2 question papers.
- Read the questions carefully and check that you understand what is required.
- After you have written your answer, re-read the question and your answer to ensure that you have fully answered the question.
- Use correct chemical terminology in your answer, for example, shell, sub-shell and orbitals do not all have the same meaning.
- Practise writing ionic equations.
- Revise the practical techniques, such as recrystallisation, and make sure that you can describe them in a logical order.

Grade Boundaries

Grade boundaries for this, and all other papers, can be found on the website on this link: http://www.edexcel.com/iwantto/Pages/grade-boundaries.aspx

Llywodraeth Cynulliad Cymru Welsh Assembly Government

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London WC2R 0RL.