

Mark Scheme (Results) January 2010

GCE

GCE Chemistry (6CH04/01)

Edexcel Limited. Registered in England and Wales No. 4496750 Registered Office: One90 High Holborn, London WC1V 7BH

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 0844 576 0025, our GCSE team on 0844 576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Examiners' Report that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:

http://www.edexcel.com/Aboutus/contact-us/

Alternately, you can speak directly to a subject specialist at Edexcel on our dedicated Science telephone line: 0844 576 0037

January 2010 Publications Code UA022681 All the material in this publication is copyright © Edexcel Ltd 2010

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Using the Mark Scheme

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.

/ means that the responses are alternatives and either answer should receive full credit.

() means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.

Phrases/words in **bold** indicate that the <u>meaning</u> of the phrase or the actual word is **essential** to the answer.

ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

• write legibly, with accurate use of spelling, grammar and punctuation in order to make the meaning clear

 select and use a form and style of writing appropriate to purpose and to complex subject matter

• organise information clearly and coherently, using specialist vocabulary when appropriate.

Full marks will be awarded if the candidate has demonstrated the above abilities.

Questions where QWC is likely to be particularly important are indicated (QWC) in the mark scheme, but this does not preclude others.

Section A

Question Number	Correct Answer	Reject	Mark
1	В		1

Question Number	Correct Answer	Reject	Mark
2	C		1

Question Number	Correct Answer	Reject	Mark
3	В		1

Question Number	Correct Answer	Reject	Mark
4	A		1

Question Number	Correct Answer	Reject	Mark
5	В		1

Question Number	Correct Answer	Reject	Mark
6	D		1

Question Number	Correct Answer	Reject	Mark
7	В		1

Question Number	Correct Answer	Reject	Mark
8	A		1

Question Number	Correct Answer	Reject	Mark
9	Α		1

Question Number	Correct Answer	Reject	Mark
10	D		1

Question	Correct Answer	Reject	Mark
Number			
11	A		1

Question Number	Correct Answer	Reject	Mark
12	С		1

Question Number	Correct Answer	Reject	Mark
13	Α		1

Question Number	Correct Answer	Reject	Mark
14	В		1

Question Number	Correct Answer	Reject	Mark
15	D		1

Question Number	Correct Answer	Reject	Mark
16	С		1

Question Number	Correct Answer	Reject	Mark
17	D		1

Question Number	Correct Answer	Reject	Mark
18	C		1

Question Number	Correct Answer	Reject	Mark
19	C		1

Question Number	Correct Answer	Reject	Mark
20	C		1

Section B

Question Number	Acceptable Answers	Reject	Mark
21 (a)(i)	<pre>(pH =) -log [H⁺] OR (pH =) -log [H₃O⁺] OR Accept Definition in words (For example: "It is minus / negative log(arithm) of the hydrogen ion concentration") Base 10 does not have to be there, but reject "In"</pre>	Just "concentration of hydrogen ions" { } curly brackets -log H ⁺	1

Question	Acceptable Answers	Reject	Mark
Number			
21 (a)(ii)	(pH = -log 0.0100) = 2(.00)	If any units given	1

Question	Acceptable Answers	Reject	Mark
Number			
21 (b)(i)	$[H_3O^+] = \underline{K_a[CH_3COOH]}$		4
	OR		
	$[H_3O^*]^2 = K_a[CH_3COOH]$ (1)		
	ALLOW		
	[HA] for [CH3COOH] and [A ⁻] for [CH3COO ⁻] in rearranged expression		
	Accept [H ⁺] for [H ₃ O ⁺]		
	∴[H₃O⁺] = √ 1.75 x 10 ⁻⁷ OR		
	\therefore [H ₃ O ⁺] = 4.18(3) x 10 ⁻⁴ (mol dm ⁻³)		
	(1)		
	pH = 3.38 / 3.4 (1)	3.37 / 3 /3.39 / a	
	ignore st except one st	correct pH value with	
	Third mark TE from $[H^{\dagger}]$ only if pH less than 7	units	
	N.B. CORRECT ANSWER, WITH OR WITHOUT WORKING, SCORES (3)		
	Assumption		
	assumes that degree of ionisation of the acid is	just "weak acid" /	
	very small/negligible	just "partially	
	OR	dissociates" / acid	
	[CH ₃ COOH] _{eqm} =[CH ₃ COOH] _{initial}	does not dissociate /	
	OR	[CH ₃ COOH] constant	
	$[H^+] = [CH_3COO^-]$ OR		
	all of the hydrogen ions come from the acid /	[H⁺] = [OH⁻] /	
	ignore hydrogen ions from the water (1)	[H⁺] = [salt]	
	IGNORE		
	any references to temperature		

Question	Acceptable Answers	Reject	Mark
Number	First marks		2
ZT (D)(11)	FIRST MARK:		2
	(Dilution/addition of water) shifts the equilibrium		
	$CH_3COOH \qquad \Rightarrow CH_3COO^- + H^+ / CH_3COO^- + H^+ / CH_3COOH + CH_3COOH + H^+ / CH_3COOH + H^+ / CH_3COOH + CH_3COH + CH_3COH$		
	$CH_{3}COOH + H_{2}O \Rightarrow CH_{3}COO^{-} + H_{3}O^{+}$		
	to the right OR the above stated in words such as: degree of dissociation increases/ proportion of dissociation increases/ more dissociation (as the ethanoic acid is diluted) (1) Second mark: So the [H ⁺] is greater than expected/ so the decrease in [H ⁺] is less than expected / so that the decrease in [H ⁺] is less than that for hydrochloric acid (1) Each mark is a stand alone mark. <i>ALTERNATIVE ROUTE:</i>	Reject just a reference to a 0.5 increase in pH for CH ₃ COOH(aq) compared with a 1.0 increase in pH for HCl(aq)	
	First mark:		
	$[H^+] = \int K_a \times [HA] \text{ OR } (K_a \times [HA])^{\frac{1}{2}}$		
	OR		
	$pH = \frac{1}{2}pK_a - \frac{1}{2}log[HA]$ (1)		
	Second mark:		
	use of mathematical expression given (e.g.[H ⁺] affected by factor of 1//10 on dilution OR substitution of numerical values into the equation) (1)		
	IGNORE: any comments or calculations relating		
	to HUI(aq)		

Question Number	Acceptable Answers		Reject	Mark
21 (c)(i)	These marks are stand alone.		"resists small change(s) in pH"	2
	Maintains an almost constant pH / resists change(s) in pH	(1)	OR "pH does not change"	
	for small addition of H ⁺ or OH ⁻ ions (N.B. bo ions needed) / for small additions of acid or alkali / for small additions of acid or base	oth (1)		
	IGNORE any references to named buffer mixtures			

Question Number	Acceptable Answers	Reject	Mark
21 (c)(ii)	citric acid		1

Question Number	Acceptable Answers	Reject	Mark
21 (c)(iii)	First mark:		4
	(buffer contains) reservoir of HA and A ⁻ OR (buffer contains) large concentrations of [HA] and [A ⁻] OR		
	both equations:		
	$HA \Rightarrow A^- + H^+ \text{ and } NaA \rightarrow Na^+ A$ (1)	$\frac{JUSI}{A} = Na^{+} + A^{-}$ and $HA \rightarrow H^{+} + A^{-}$	
	Second mark:	without correct	
	(Addition of alkali/base)	description	
	$\begin{array}{l} HA + OH^{-} \rightarrow A^{-} + H_{2}O \\ OR \\ description/equations to show that H^{+} reacts \\ with OH^{-} (to form H_{2}O) and more acid \\ dissociates (to replace H^{+}) \end{array} \tag{1}$		
	Third mark:		
	(Addition of acid)		
	$A^- + H^+ \rightarrow HA$ OR A^- reacting with H^+ in any context described in words (e.g. by reference to weak acid equilibrium) (1)		
	Fourth mark:		
	the ratio of [A ⁻]÷[HA] hardly changes / the ratio of [HA]÷ [A ⁻] hardly changes OR [A ⁻] nor [HA] changes significantly (1)	Just [H⁺] remains constant	

Question	Acceptable Answers	Reject	Mark
Number			
22 (a) QWC	Each mark is a stand alone mark.		3
-	First mark:		
	hydrogen bonds in both ethanoic acid and ethanol OR no hydrogen bonds in ethanal (1)	any reference to hydrogen bonding in ethanal	
		just references to ethanol and ethanoic acid forming H bonds with water	
	Second mark:		
	hydrogen bonds are stronger than van der Waals'/ dipole-dipole/London/dispersion/ induced dipole / permanent dipole /intermolecular forces (in ethanal) OR hydrogen bonds are the strongest/strong intermolecular forces (1)	references to breaking covalent bonds	
	Third mark:		
	ethanoic acid has more electrons/ethanoic acid has the most electrons OR ethanoic acid is dimeric OR ethanoic acid forms dimers OR description of ethanoic acid dimers (N.B. In the context of dimerisation, ignore statement that "ethanoic acid forms two hydrogen bonds per molecule") OR ethanoic acid is more polar because of having more oxygen atoms	Just "ethanoic acid has more hydrogen bonds than ethanol"	
	(1)		

Question Number	Acceptable Answers	Reject	Mark
22 (b)(i)	 (Test): 2,4-dinitrophenylhydrazine /Brady's reagent/2,4-dnp/ 2,4-DNP/2,4-DNPH (Result):yellow precipitate /orange precipitate /red precipitate ALLOW: 'solid' or 'crystals' in lieu of precipitate 	1,2 -DNP etc/ hydrazine / /2,4- dinitrophenolhydrazine /2,4- dinitrophenylhydrazone	2
	(1) Result mark for result CQ on correct reagent (or a near miss reagent (e.g. 2,4-DHPN))		

Question	Acceptable Answers		Reject		Mark
Number		-			0
22 (b)(ii)	(Warm with) Fehling's (solution) / Benedict'	's	acidified potassium		2
	(solution)		dichromate(VI) /		
		(1)	manganate(VII)	(0)	
	red precipitate/brown precipitate/brick-rec precipitate	d (1)	iodoform reaction	(0)	
	ALLOW "red CupO"		Just Ted due to Cu	3+	
	ALLOW red Cu ₂ O	est	"red solid due to Cu	5+,,	
	ALLOW yellow of ange solid for benealer s to	CSC		(0)	
	Penalise omission of "solid" once only in parts (b)(i) and (b)(ii)				
	OP				
	(Warm with) Tollens' (reagent)	1)			
	(warm with) rollens (reagent) (' '			
	silver (mirror)/black(solid)	(1)			
	(N.B. here, solid not required)				
	OR (Warm with) ammoniacal silver nitrate (solution)	(1)			
	silver (mirror)/ black / dark-grey (solid)	(1)			
	(N.B. here, solid not required)				
	2nd mark CQ on correct reagent or a near miss				
	Penalise omission of "solid" once only in (b)(i) and (b)(ii)				

Question Number	Acceptable Answers	Reject	Mark
22 (c)(i)	$\begin{array}{c} CH_{4} \\ H \\ H \\ CN \\ (1) both arrows (1) \\ (1) both arrows (1) \\ (1) \\ CH_{4} \\ H \\ CN \\ (1) \\ IGNORE any dipoles shown \\ Check curly arrows are all double-headed in mechanism. (If all arrows are single-headed, can only score intermediate mark.) \\ Accept: arrow to an H+ instead of an H-CN for third mark. [It is not necessary to show the lone pairs.] \\ IGNORE any equations which generate CN- ions \\ \end{array}$	arrow from N in CN-	3

Question Number	Acceptable Answers	Reject	Mark
22 (c)(ii)	With HCN alone, insufficient CN ⁻ OR KCN provides (sufficient) CN ⁻ OR KCN increases the concentration of CN ⁻ <i>ALLOW</i> "nucleophile" instead of CN ⁻ <i>IGNORE</i> any subsequent comments about the role of the CN ⁻ ion	Just "HCN is a weak acid" OR HCN "is too weak a nucleophile"	1

Question Number	Acceptable Answers	Reject	Mark
22 (c)(iii) QWC	These are stand alone marks		2
	First mark:	attack on a (planar) carbocation	
	attack from both sides OR	OR attack on a (planar) intermediate	
	attack from above and below	OR	
	(1)	S _N 1 OR	
		S _N 2	
	Second mark:		
	(gives) racemic mixture / (gives) equal amounts of each isomer / (gives) equal amounts of each enantiomer (1)	"planar product"	

Question Number	Acceptable Answers	Reject	Mark
23 (a)(i)	These are stand alone marks		2
	First mark:		
	(ensures that) [H ⁺] and [propanone] (virtually) constant OR so that the [H ⁺] and [propanone] do not affect the rate (1)		
	Second mark:		
	the $[I_2]$ / iodine concentration changes		
	OR		
	so that the overall order (of reaction) is not determined		
	OR		
	otherwise a curve (graph) is obtained		
	NOTE:-		
	"only the [I ₂] changes scores (2) OR "only the I ₂ concentration changes" scores (2) BUT		
	"only the iodine changes" scores (1)		

Question Number	Acceptable Answers	Reject	Mark
23 (a)(ii)	First mark: double the concentration of propanone OR change/increase/decrease the concentration of propanone (1) Second mark (mark consequentially):		2
	slope/gradient of line doubles <i>ALLOW</i> "rate doubles" <i>OR</i> slope or gradient changes/increases/decreases by same factor <i>ALLOW</i> "rate changes/increases/decreases by same factor" (1)		
	NOTE: may suggest a different procedure:-		
	First mark: monitor/measure [propanone] over time (1) Second mark (mark consequentially): plot [propanone] v. time graph and state that t _{1/2} constant (1)		

Acceptable Answers	Reject	Mark
I₂ not involved in rate-determining step/ I₂ not involved in slow(est) step / H ⁺ and propanone involved in rate-determining step/ H ⁺ and propanone involved in slow(est)step (1)	I ₂ involved before rate- determining/slowest step (0)	2
so there must be another step where I_2 is involved/ so there must be a fast step where I_2 is involved (1)		
BUT:-		
I_2 not involved until after the rate-determining step/ I_2 not involved until after the slow(est) step		
(2)		
ALLOW		
H^{+} involved in rate-determining step (1)		
and is regenerated as it is a catalyst (in another step)		
	Acceptable Answers l ₂ not involved in rate-determining step/ l ₂ not involved in slow(est) step / H ⁺ and propanone involved in rate-determining step/ H ⁺ and propanone involved in slow(est)step (1) so there must be another step where l ₂ is involved/ so there must be a fast step where l ₂ is involved (1) <i>BUT:-</i> l ₂ not involved until after the rate-determining step/ l ₂ not involved until after the slow(est) step (2) <i>ALLOW</i> H ⁺ involved in rate-determining step (1) and is regenerated as it is a catalyst (in another step) (1)	Acceptable Answers Reject I2 not involved in rate-determining step/ I2 not involved in slow(est) step / I2 involved before rate- determining/slowest step/ H* and propanone involved in rate-determining step/ I2 involved before rate- determining/slowest step (0) so there must be another step where I2 is involved/ so there must be a fast step where I2 is involved (1) (1) BUT:- (1) I2 not involved until after the rate-determining step/ I2 not involved until after the slow(est) step (2) ALLOW (1) H* involved in rate-determining step/ I2 not involved until after the slow(est) step (1) and is regenerated as it is a catalyst (in another step) (1)

Question Number	Acceptable Answers	Reject	Mark
23 (b)(i)	$HCO_3^- + H^+ \to H_2O + CO_2$	NaHCO₃ + HCl →	1
	OR	NaCl + H ₂ O + CO ₂ OR	
	$HCO_3^- + H^+ \rightarrow H_2CO_3$	any equations with HA	
	OR		
	$HCO_3^- + H_3O^+ \rightarrow 2H_2O + CO_2$		
	OR		
	$HCO_3^- + H_3O^+ \rightarrow H_2CO_3 + H_2O$		
	ALLOW:		
	$NaHCO_3 + H^+ \rightarrow Na^+ + H_2O + CO_2$		
	OR		
	$Na^{+} + HCO_{3}^{-} + H^{+} \rightarrow Na^{+} + H_{2}O + CO_{2}$		
	<i>IGNORE</i> any correct or any incorrect state symbols		

Question Number	Acceptable Answers		Reject	Mark
23 (b)(ii)	CH ₃ COCH ₃ + 3 I ₂ + 4 NaOH			3
	\rightarrow CHI ₃ + CH ₃ COONa + 3 NaI + 3 H ₂ O			
	<i>IGNORE</i> any correct or any incorrect state symbols			
	CHI ₃ on RHS of equation remaining species correct	(1) (1)		
	balanced equation	(1)		
	NOTE:			
	balancing mark is CQ on all species correct			
	Accept correct ionic equation (i.e. Na ⁺ omitted)			
	NOTE: If CH ₃ I, can only access second mark above			

Question Number	Acceptable Answers	Reject	Mark
24 (a)	$K_{p} = \frac{p(H_{2})^{3} p(CO)}{p(CH_{4})p(H_{2}O)}$ Brackets not required (1)	[] $K_{p} = \frac{p(H_{2})^{3} + p(CO)}{p(CH_{4}) + p(H_{2}O)}$	1

Question Number	Acceptable Answers	Reject	Mark
24 (b)(i)	No effect (as K_p dependent only on temperature)		1
	(1)		

Question	Acceptable Answers	Reject	Mark
Number			
24 (b)(ii)	(Since $K_p = \frac{x(H_2)^3 x(CO) \times P_T^4}{x(CH_4)x(H_2O)} P_T^2$		2
	to maintain K_p constant, mole fractions of numerator must decrease OR mole fractions of denominator must increase as $\times P_T^2$ overall)		
	First mark:		
	EITHER mole fractions/partial pressures of numerator decrease OR mole fractions/partial pressures of denominator increase (1) Second mark: any mention of $\times P_T^2$ OR $\times \frac{P_T^4}{P_T^2}$		
	(1)		
	ALLOW P for P_{T}		
	NOTE: If Le Chatelier quoted, statements such as:		
	"Equilibrium shifts to side of fewer moles (of gas molecules)/fewer (gas) molecules"		
	lliax (1)		

Question Number	Acceptable Answers	Reject	Mark
24 (b)(iii)	Reaction takes place on surface of the catalyst(1)Active sites/(catalyst) surface is saturated with reactant molecules/reactants (at the pressure of the reaction)Of the reaction)NOTE: an answer such as " depends on the availability of active sites 		2

Question Number	Acceptable Answers				Reject	Mark	
24 (c)		CO +	H ₂ O =	≐ CO ₂	+ H ₂		3
	initial	1	1	0	0		
	eq'm	0.25	0.25	0.75	0.75		
	mol	0.125	0.125	0.375	0.375		
	frac	0.75	A 75	44.05	44.05		
	РР	3.75	3.75	11.25	11.25		
	• eq	ı'm moles	all correc	t	(1)		
	• mo	ole fractio	ons all cor	rect	(1)		
	• pa ur	rtial press I its	sures and	answer =	9 with no (1)		
	NOTE: 3rd mark not awarded if any units shown						
	NOTE: <u>11</u> 3. =	<u>.25²</u> 75 ² 9		2	scores (3)		
	NOTE: Ma CHECK AI	rk each st _L WORKI	ep CQ. NG				

Question Number	Acceptable Answers	Reject	Mark
24 (d)(i)	production (of hydrogen) forms CO ₂ OR production (of hydrogen) forms a Greenhouse gas OR production (of hydrogen) forms CO OR CO ₂ is a Greenhouse gas OR CO is a Greenhouse gas ALLOW production (of hydrogen) uses/requires energy ALLOW CO is toxic/poisonous	methane produced (0)	1

Question Number	Acceptable Answers	Reject	Mark
24 (d)(ii)	$2KHCO_3 \rightarrow K_2CO_3 + CO_2 + H_2O$		1
	ALLOW multiples		

Question Number	Acceptable Answers	Reject	Mark
24 (e)	products removed OR not a closed system OR balance between rate and yield OR balance between time and yield OR recycling of reactants OR more product in unit time (so process more economically viable) <i>IGNORE</i> any comments relating to cost	references to atom economy dangers of maintaining high pressures	1

Section C

Question Number	Acceptable Answers	Reject	Mark
25 (a)	ΔS°_{total} is positive / $\Delta S^{\circ}_{total} > 0$ with or without superscript <i>NOTE</i> : This mark may be awarded from answer to Q25(b)(v) Accept ΔG° is negative	Just "the entropy is positive"	1

Question Number	Acceptable Answers	Reject	Mark
25 (b)(i)	(+)27.3 and (+)87.4 (J mol ⁻¹ K ⁻¹)		1
	IGNORE incorrect units		

Question Number	Acceptable Answers		Reject	Mark
25 (b)(ii)	$\Delta S^{o}_{sys} = (2x87.4) - \{(4x27.3 + (3x205.0))\} $ (1	1)		2
	$= -549.4 / -549(J \text{ mol}^{-1} \text{ K}^{-1}) $ (*	1)		
	Correct answer with or without correct units	s (2)		
	IGNORE any wrong units	2)		
	Accept TE from (b)(i)			
	NOTE: +549/+549.4 scores (1)			
	Check working			
	NOTE:			
	2 nd mark: for (products - reactants), with correct arithmetic			

Question Number	Acceptable Answers	Reject	Mark
25 (b)(iii)	$\Delta S_{surr} = -\underline{\Delta H}_{T}$ $= -(-1648 \times 10^{3}) \div 298(.15) \text{ (J mol}^{-1} \text{ K}^{-1})$ $= (+) 5530 \text{ (J mol}^{-1} \text{ K}^{-1})$ OR $= (+) 5.53 \text{ kJ mol}^{-1} \text{ K}^{-1} \qquad (1)$ <i>NOTES:</i> • Correct answer, with or without working, scores (1) • If 5530 (J mol}^{-1} \text{ K}^{-1}) given, IGNORE any subsequent incorrect attempts to convert it to a value in kJ mol}^{-1} \text{ K}^{-1} <i>IGNORE</i> s.f. except one s.f.	Just (+)5.53 with no units OR (+)5.53 kJ mol ⁻¹	1

Question Number	Acceptable Answers	Reject	Mark
25 (b)(iv)	ΔS _{total} = (-549.4) +(+5530) = +4980.6/+ 4981 J mol ⁻¹ K ⁻¹ OR +4.981 kJ mol ⁻¹ K ⁻¹ (1) for value (1) for correct sign and units <i>IGNORE</i> s.f. except one s.f.	Just the formula: $\Delta S_{total} = \Delta S_{sys}^{o} + \Delta S_{surr}$	2
	Accept TE from (b)(ii) and (b)(iii)		

Question Number	Acceptable Answers	Reject	Mark
25 (b)(v)	$(\Delta S_{system} \text{ is negative}):$ as loss of disorder as gas \rightarrow solid OR more order as gas \rightarrow solid OR		3
	as decrease in entropy as gas $ ightarrow$ solid		
	(1)		
	$(\Delta S_{surr} \text{ is positive}):$		
	(heat) energy released (increases kinetic energy and hence movement of the surrounding molecules) (1)	Just "reaction is exothermic"	
	$ \Delta S_{total} \text{ is positive because } \Delta S_{surr} \text{ is (numerically)} $ greater than ΔS_{sys} OR $ \Delta S_{surr} \text{ "outweighs" } \Delta S_{sys}$ OR $ \Delta S_{surr} \text{ sufficiently large so that } \Delta S_{total} \text{ is positive} $ (1)	ΔS_{total} is negative (0) for third scoring point	

Question	Acceptable Answers	Reject	Mark
Number 26 (a)	(IR spectrum of X)		4
()			-
	peak at 3400 (cm ⁻¹) (1)		
	MAY BE ANNOTATED ON SPECTRUM		
	<i>ALLOW</i> anything in the Data Booklet range which is 3200 to 3750 (cm ⁻¹)	X is a phenol (0)	
	X has an O-H (group) OR X is an alcohol (1)		
	(From the chemical information)		
	X is primary or secondary (alcohol) OR X is not tertiary (alcohol) OR X is any two from:		
	butan-1-ol, butan-2-ol, (2)-methylpropan-1-ol (1)		
	Y is an aldehyde or a ketoneALLOW "Y is a carbonyl"(1)		
	NOTE RE THIRD/FOURTH SCORING POINTS:		
	If just state that X is butan-1-ol with no justification (0) but then go on to state Y is butanal, give (1) CQ mark		
	OR		
	If just state that X is butan-2-ol with no justification (0) but then go on to state Y is butanone, give (1) CQ mark		
	OR If just state that X is (2)-methylpropan-1-ol with no justification		
	(0) but then go on to state Y is (2)-methylpropanal, give CQ mark (1)		
	<i>NOTE</i> : These Part (a) marks may be awarded from answers to either Part (a) or Part (b)		

26 (b) QWC	First two marks: X is CH ₃ CH(OH)CH ₂ CH ₃	(1)	6
	Y is CH ₃ COCH ₂ CH ₃	(1)	
	These marks are stand alone		
	<i>NOTE</i> : Two correct names, but no structura formulae for both scores (1) out of (2)	al	
	If X identified as CH ₃ CH ₂ CH ₂ CH ₂ OH and		
	and fidentified as CH ₃ CH ₂ CH ₂ CHO		
	(All A B as a straw of X)	()	
	(NMR spectrum of X)		
	Third mark:- hydrogen OR H in five (different) environn	nents	
	(IGNORE reference to butan-1-ol here)		
	OR		
	(so must be butan-1-ol or butan-2-ol and) r 2-methylpropan-1-ol which has four peaks/hydrogen environments	not	
	<i>NOTE:</i> Candidates may annotate a structur displayed formula to show that there are fir environments. (For this mark, no details o splitting or chemical shifts are needed.)	(1) al or ive f	
	sextuplet at 3.7		
	H H H H H H H H H H H H H H H H H H H		
	singlet at 2.4		
	splitting pattern (2,6,1,5,3) consistent with butan-2-ol OR splitting pattern inconsistent with butan-1- (which is 3,6,5,3,1)	າ ol (1)	

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481 Email <u>publications@linneydirect.com</u> Order Code UA022681 January 2010

For more information on Edexcel qualifications, please visit <u>www.edexcel.com/quals</u>

Edexcel Limited. Registered in England and Wales no.4496750 Registered Office: One90 High Holborn, London, WC1V 7BH