

Mark Scheme (Results)

Summer 2015

GCE Chemistry (6CH04/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2015
Publications Code UA041082*
All the material in this publication is copyright
© Pearson Education Ltd 2015

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Mark schemes will indicate within the table where, and which strands of QWC, are being assessed. The strands are as follows:
 - i) ensure that text is legible and that spelling, punctuation and grammar are accurate so that meaning is clear
 - ii) select and use a form and style of writing appropriate to purpose and to complex subject matter
 - iii) organise information clearly and coherently, using specialist vocabulary when appropriate

Section A (multiple choice)

Question	Correct Answer	Reject	Mark
Number			
1	D		1
Question	Correct Answer	Reject	Mark
Number	Correct / triswer	Reject	Tidik
	D		4
2	В		1
		•	
Question	Correct Answer	Reject	Mark
Number			
3	C		1
		•	
Question	Correct Answer	Reject	Mark
Number	Correct Allswei	Reject	Mark
			4
4	C	1	1
Question	Correct Answer	Reject	Mark
Number			
5	С		1
		<u> </u>	
Question	Correct Answer	Poject	Mark
	Correct Ariswei	Reject	Mark
Number			
6 (a)	D		1
1			
Question	Correct Answer	Reject	Mark
Number			
6 (b)	A		1
			l l
Question	Correct Answer	Reject	Mark
Number	Correct Ariswei	Reject	Mark
			4
7	D		1
Question	Correct Answer	Reject	Mark
Number			
8(a)	D		1
	•		1
Question	Correct Answer	Reject	Mark
	COTTECT ATISWEI	Reject	Mark
Number			_
8(b)	A	1	1
Question	Correct Answer	Reject	Mark
Number			
9	С		1
	•	•	
Question	Correct Answer	Reject	Mark
	COTTECT ATISWEI	Reject	Mark
Number			1
10(a)	D		

Question Number	Correct Answer	Reject	Mark
10(b)	В		1
Question Number	Correct Answer	Reject	Mark
	С		1
10(c)			1
Question Number	Correct Answer	Reject	Mark
11(a)	D		1
Question Number	Correct Answer	Reject	Mark
11(b)	Α		1
		1	
Question Number	Correct Answer	Reject	Mark
11(c)	С		1
()		<u>I</u>	, –
Question Number	Correct Answer	Reject	Mark
12(a)	В		1
			•
Question Number	Correct Answer	Reject	Mark
12(b)	Α		1
	'	1	ı
Question Number	Correct Answer	Reject	Mark
12(c)	В		1

Total for Section A = 20 marks

Section B

Q13 (a) PENALISE USE OF CH₃COOH / 'ethanoic acid' [instead of propanoic acid] once only. ALLOW 'NaOH' for 'KOH', however.

0	Comment American	Dair	Marila
Question Number	Correct Answer	Reject	Mark
13 (a)(i)	Q13 (a) PENALISE USE OF CH ₃ COOH / 'ethanoic acid' [instead of propanoic acid] once only. ALLOW 'NaOH' for 'KOH', however.		3
	1st mark: Identification of buffer		
	Any mention of buffer / buffering (region) (1)		
	IGNORE references to shape / gradient of graph		
	2nd mark: Identification of species present responsible for buffering action		
	(Both) propanoic acid and propanoate (ions) present OR (Both) propanoic acid and potassium propanoate present OR (Both) a weak acid and its salt/conjugate base are present OR (Both) CH ₃ CH ₂ COOH and CH ₃ CH ₂ COO ⁻ present OR (Both) HA and A ⁻ are present		
	Can be awarded from an equation (1)		

3rd mark: Two routes for this mark:

1st route:

For how these species were formed OR

alternatively

2nd route:

For mention of how this buffer works, on small additions of OH⁻

1st ROUTE to 3rd mark

 $CH_3CH_2COOH + OH^- \rightarrow H_2O + CH_3CH_2COO^-$ OR

In words, **excess** CH₃CH₂COOH is left / some CH₃CH₂COOH has reacted with potassium hydroxide / KOH / OH⁻ (forming propanoate ions)

2nd ROUTE - buffering action

On addition of OH^- (in small quantities) H^+ ions react with (the added) OH^- and

(the equilibrium)

 $CH_3CH_2COOH = CH_3CH_2COO^- + H^+$ shifts to the **right**

OR

(the reservoir of undissociated) CH₃CH₂COOH molecules react with (the added) OH⁻

NOTE:

For the 2nd route "OR" mark here, this statement/equation must be in the context of buffering action

IGNORE

References to buffering action on addition of H⁺ ions (not relevant here)

(1)

Question Number	Correct Answer	Reject	Mark
13 (a) (ii)	1st scoring point: Propanoate ions present (at equivalence point) OR Potassium propanoate present (at equivalence point) (1)		3
	2nd scoring point:		
	Propanoate (ions) react with water / propanoate (ions) are hydrolysed by water / CH ₃ CH ₂ COO ⁻ ions react with water		
	ALLOW propanoate ions react with H ⁺ (from water) / the salt reacts with water (molecules)		
	(1)		
	3rd scoring point – consequential on 2 nd scoring point being awarded:		
	Forming hydroxide ions/ leaves excess of hydroxide ions / produces OH ⁻ / forming KOH / [OH ⁻] > [H ⁺] (1)		
	NOTE – the equation:		
	$CH_3CH_2COO^- + H_2O \rightarrow OH^- + CH_3CH_2COOH$ OR		
	$CH_3CH_2COOK + H_2O \rightarrow KOH + CH_3CH_2COOH$		
	scores ALL THREE MARKS		
	NOTE Just 'weak acid – strong base titration' scores (1) only		

Question Number	Correct Answer	Reject	Mark
13 (a) (iii)	[FIRST, CHECK THE FINAL ANSWER IF ANSWER pH = 12(.02), award 5 marks] Moles of acid used = 25/1000 x 0.024 OR moles of acid used = 6 x 10 ⁻⁴ (mol)		5
	and		
	Moles of alkali added = $40/1000 \times 0.032$ OR Moles of alkali added = 1.28×10^{-3} (mol)		
	Moles of excess alkali = $1.28 \times 10^{-3} - 6 \times 10^{-4}$ OR		
	Moles of excess alkali = 6.8×10^{-4} (mol) (1)		
	$[OH^{-}] = 6.8 \times 10^{-4} / (65/1000)$ = 0.01046 (mol dm ⁻³) (1)		
	Allow TE from incorrect moles of acid or alkali, provided the alkali moles are in excess		
	$[H^{+}] = 1 \times 10^{-14} / 0.01046$ = 9.56 x 10 ⁻¹³ (mol dm ⁻³) (1)		
	Allow TE from incorrect moles of excess alkali or the candidate's value of $[OH^-]$. Must use K_w value here to get $[H^+]$		
	$pH = -log 9.56 \times 10^{-13}$		
	= 12(.02) (1)		
	Can get M4 and M5 using pH + pOH = 14		
	Allow TE from incorrect [H ⁺] for M5, but their CQ pH must > 7		
	IGNORE S.F. EXCEPT 1 SF		

NOTE

If fail to \div by 0.065 dm³, then pH = 10.8 scores 4 marks.

Other answers to look for if M1 and M2 have been awarded, but division by an incorrect value for the total volume of the mixture, then each of the following would score 4 overall as shown.

If \div by 0.025 dm³, no M3

pH = 12(.43) scores 4 marks.

If ÷ by 0.040 dm³, no M3

pH = 12(.23) scores 4 marks.

If ÷ by 0.015 dm³, no M3

pH = 12(.66) scores 4 marks.

Question Number	Correct Answer	Reject	Mark
13 (b)	No, as T increases eqm moves to RHS / $K_{\rm w}$ increases / 'favours RHS' / $\Delta S_{\rm total}$ increases (1)		3
	So $[H^+]$ ions increases / more H^+ ions $[H^+] > 1 \times 10^{-7}$		
	(1)		
	Hence pH < 7 / pH decreases (1)		
	OR reverse argument for a decrease in temperature		
	NOTE		
	If answer given is 'Yes' (i.e. candidate thinks that the pH of pure water is always 7.0), then max (1) for stating that equilibrium shifts to the right when temperature increases (since reaction is endothermic in the forward direction)		
	NOTE		
	If says K_w decreases as T increases, then max (1) for a completely logical CQ argument mentioning the effect on [H ⁺] (decreasing) and pH (increasing)		

(TOTAL FOR QUESTION 13 = 14 marks)

Question Number	Correct Answer	Reject	Mark
14 (a)	1st mark: Take samples (of reaction mixture) at various times OR Using of different mixtures (e.g. in separate conical flasks) THEN: EITHER Quench (with ice) / remove the catalyst (1) Titrate with acid of known concentration/standard (using a suitable indicator) OR	NaHCO ₃	3
	Quench with acid (1)	NaHCO₃	
	Titrate with alkali of known concentration (using a suitable indicator) (1)		
	If no quenching, M3 can only be awarded if titrate with acid of known concentration		

Question Number	Correct Answer	Reject	Mark
14 (b) (i)	(As) rate is (directly) proportional to concentration / as [A] doubles so does rate / rate ∞ concentration / rate ∞ [A]		1
	ALLOW Just `straight line through origin/(0,0)'		
	IGNORE References just to a 'constant gradient' References to just 'it is a straight line' References to positive correlation		

Question Number	Correct Answer	Reject	Mark
14 (b) (ii)	1st mark: Rate higher than expected / rate unusually high / higher rate (for the anomalous points on the graph) (1)		3
	2nd mark:		
	Reaction is exothermic / (heat) energy is released during the reaction (1)		
	3rd mark:		
	EITHER		
	(So) there are more particles/collisions with energy $> E_a$		
	ALLOW Higher proportion of successful collisions / just more successful collisions		
	IGNORE Just 'more collisions' / 'more frequent collisions'		
	OR		
	At higher concentrations of A , the effect of the reaction being exothermic is greater		
	(1)		

Question Number	Correct Answer	Reject	Mark
14 (c) (i)	Increases reliability / improves validity (of the data obtained) / confirms the initial results / to check for anomalous results IGNORE References to average / precision / accuracy OR To determine order w.r.t. B and X / to see the effect of B and X (on the rate) / enables order of other reagents to be determined / to determine order w.r.t. B / find overall order / determine rate equation / to calculate k		1

Question Number	Correct Answer		Reject	Mark
14 (c) (ii)	1st order w.r.t. X	(1) (1)		5
	Rate = k [A][X] OR Rate = k [A][X][B] ⁰ ALLOW TE for CQ correct rate equation on incorrect order(s) Correct reasoning using data from table to deduce the CORRECT order w.r.t. B NOTE that there must be reference to TWO relevant concentrations changing	(1)		
	Eg (Expt 1 & 3) [A] triples, so does rate AND [B] doubles so order w.r.t. B is 0 (Expt 2 & 3) [A] x 1.5, rate x 1.5 AND [B] doubles so order w.r.t. B is 0 This mark can only be awarded if the reason shows that order w.r.t B is zero. Not enough just to say 'as [B] doubles, rate unchanged' Correct reasoning using data from table to	(1)		

deduce the **CORRECT** order w.r.t. X

NOTE that there must be reference to **TWO** relevant concentrations changing

E.g.

(Expt 1 & 4) [A] x 4 (and [B] x 2) **AND** [X] \div 2 rate doubles so order w.r.t. X is 1

(Expt 2 & 4) [A] x 2 (and [B] x 2) **AND** [X] \div 2 rate stays the same so order w.r.t. X is 1

(Expt 3 & 4) [A] x 4/3 (and [B] stays the same) **AND** [X] \div 2 rate decreases by 2/3, so order w.r.t. X is 1

This mark can only be awarded if the reasoning shows that order w.r.t X is one.

Not enough **just** to say 'as [X] doubles, rate doubles'

(1)

IGNORE

Any justification not concluded from data in the table

Working to confirm order w.r.t. A = 1 (already given in question)

NOTE

Correct rate equation **alone** scores M1, M2 and M3

Question Number	Correct Answer	Reject	Mark
14 (c) (iii)	$k = \text{rate} / [A][X] = 4.2 \times 10^{-3} \div (0.08 \times 0.25)$ = 0.21		2
	(1)		
	$dm^3 mol^{-1} s^{-1} / mol^{-1} dm^3 s^{-1}$		
	ALLOW units in any order (1)		
	Comment Unit mark is independent of the value		
	Allow use of data from experiments 1, 2 & 3		
	Allow TE from an incorrect rate equation given in answer to Q14(c)(ii) or a 'new' rate equation given at the start of answer to Q14(c)(iii), if of the form rate = k		

Question Number	Correct Answer	Reject	Mark
14 (d)	Correct feature		3
	ANY <u>one</u> of:		
	First step does involve carbocation formation / carbocation is correct / two electrons taken by Br atom in C-Br bond / C-Br bond breaks (heterolytically)		
	(Second step does involve) attack of hydroxide ion		
	First order wrt the halogenoalkane / 1st order wrt 2-bromomethylpropane		
	(S _N 1) is a two-step process		
	Curly arrow <u>s</u> are correct		
	(1)		
	Incorrect features		
	ANY two of:		
	 Should be S_N1 (not S_N2) 		
	First step is slow		
	Second step is fast		
	• (It is not) S _N 2		
	 C^{δ+} – Br ^{δ-} not shown / dipole on C–Br bond not shown 		
	(2)		

TOTAL FOR QUESTION 14 = 18 marks)

Question Number	Correct Answer	Reject	Mark
15 (a)	EITHER (consideration of kinetics)		2
	Rate of reaction increases (1)		
	As collisions are more frequent / increases frequency of collisions / more collisions per second		
	IGNORE Just 'more collisions' or just 'more successful collisions' (1)		
	OR (if assumes an equilibrium reaction)		
	Yield increases / eq'm shifts to RHS (1)		
	Since fewer moles of gas / no moles of gas / fewer molecules of gas (on RHS) (1)		
	MUST AWARD MARKS BY ONLY CONSIDERING ONE OF THE ROUTES – CANNOT score full marks via one mark from each route if 'MIX UP' KINETICS AND EQUILIBRIUM ARGUMENTS Eg Rate increases, so yield of product increases scores (1)		

Question Number	Correct Answer		Rejec t	Mark
15 (b)	[FIRST, CHECK THE FINAL ANSWER IF ANSWER = 3.1 (tonnes), award 3 marks]			3
	EITHER			
	1 tonne $C_6H_5ONa: 180/116$ tonnes $C_6H_4(OH)(CO_2H)$	(1)		
	2.5 tonnes C_6H_5ONa : (180/116) x 2.5 (tonnes) $C_6H_4(OH)(CO_2H)$ at 100% yield (= 3.879 tonnes)	(1)	g	
	So actual yield = (180/116) x 2.5 x 79/1	00		
	(3.06) = 3.1 (tonnes)	(1)		
	OR			
	Moles C_6H_5ONa (= $2.5 \times 10^6 \div 116$) = 21 551.7 (mol)			
		(1)		
	Moles C_6H_5ONa (79% yield) (= 21 551.7 x 0.79) = 17025.8 (mol)	(1)		
	M	(1)		
	Mass C_6H_5ONa (= 17025.8 x 180 = 3064644 g = 3.06 tonnes)			
	= 3.1 (tonnes) to 2SF	(1)		
	Correct answer TO 2 SF, no working (3)			
	Can work in g (instead of tonnes) until fi	nal		
	So final answer of 3.06 (tonnes) scores M1 and M2 only			
	Award only (1) mark for 3.07 (tonnes) without working			

Question Number	Correct Answer	Reject	Mark
15 (c)	Esterification / acylation / ethanoylation ALLOW 'acetylation'		2
	OR		
	`(nucleophilic) addition-elimination'		
	BOTH words (addition and elimination) are needed for this option		
	IGNORE 'Condensation'		
	(1)		
	CH₃COCI / ethanoyl chloride OR		
	(CH ₃ CO) ₂ O / ethanoic anhydride (1)		
	ALLOW		
	CH ₃ COOH / ethanoic acid (in presence of H ₂ SO ₄)		
	Correct displayed / skeletal formulae		
	IGNORE		
	JUST 'acid anhydride' / 'acid chloride'		

(TOTAL FOR QUESTION 15 = 7 marks)

Question Number	Correct Answer	Reject	Mark
16 (a) (i)	1st mark: Filter (off solid) / centrifuge (1)		2
	2nd mark:		
	(Fractionally) distil / evaporate	`recrystallise' for 2nd mark	
	ALLOW		
	Just 'heat' / steam distillation for 2nd mark		
	(1)		
	IGNORE Any other practical steps (e.g. separating funnel)		
	Mark the two scoring points independently, but award (1) if 'filter' is first mentioned after 'distil' / 'evaporate' / 'heat' / 'steam distillation'		

Question Number	Correct Answer	Reject	Mark
16 (a) (ii)	CH ₂ OH R'COOCH ₃ + R"COOCH ₃ + CHOH CH ₂ OH		2
	First mark for all three esters (1)		
	Second mark for structure of propane–1,2,3-triol		
	IGNORE Formulae written such as $C_3H_5(OH)_3$ or $C_3H_8O_3$		
	ALLOW CO_2 or OCO for COO for ester linkage		
	H₃COOCR' / CH₃OOCR'		
	Mark independently		

Question Number	Correct Answer	Reject	Mark
16 (a) (iii)	Sodium hydroxide / potassium hydroxide / NaOH / KOH / OH ⁻	Ni / nickel	1
	sulfuric acid / H ₂ SO ₄ or any other named strong acids or strong alkalis / HCl / just 'acid' / just 'base' / just 'alkali' / just H ⁺	`weak'	

Question Number	Correct Answer	Reject	Mark
16 (b)	Advantage of coffee grounds:		4
	1st mark: For any mention of re-use of a resource or other listed advantages		
	EXAMPLES TO LOOK FOR:		
	Reuse of a waste material / less waste / no need to set up (new) coffee plantations / recycling		
	Prevents using up landfill		
	Coffee (plants / beans are) renewable (resource) / can be re-grown NOTE 'renewable' can score M3 as well if palm oil also described as renewable		
	Coffee is widely-used (so grounds available)		
	IGNORE Just coffee easier to grow / JUST 'doesn't require tropical conditions' / doesn't require (extra) land		
	Disadvantage of coffee grounds: (1)		
	2nd mark: For any mention that coffee grounds made on a small-scale (so uneconomical) or other features listed below		
	EXAMPLES TO LOOK FOR:		
	Uses solvents / uses methanol / not carbon- neutral (from non-renewable resources such as crude oil)		
	Only 10 – 15% by mass of oil / has a low(er) yield of oil (than palm oil)) if not awarded for M3		
	(Only made on a) small-scale so will not meet demand for biodiesel		
	Coffee grounds distributed in small amounts (so will need collecting and transporting)		
	ALLOW Costs of the use of solvents or		
	energy required for extraction / energy required for distillation / energy required for purification or transport costs if not awarded for M4		
	(1)		

Advantage of palm oil:
3rd mark: For any mention of palm oil being a plant-based / renewable / sustainable (resource)

EXAMPLES TO LOOK FOR:

Palm oil (made from plants that) can be re-grown / palm oil made from natural resources

Palm oil (made from plants that are) renewable resources / palm oil made from 'sustainable' resource

NOTE 'renewable' can score M1 as well if coffee also described as renewable

Palm oil (made from plants that are) carbonneutral / better carbon foot print / absorb CO₂

IGNORE

Just 'greener' (already mentioned in question)

ALLOW economic argument such as:

Higher yield of oil (than in coffee grounds) **if not** already awarded for M2

Large scale production so economies of scale / more able to meet demand

Fewer stages in its production (so more economical)

(1)

Disadvantage of palm oil: 4th mark: For any mention of a disadvantage of a plant-based resource

EXAMPLES TO LOOK FOR:

Large scale plantations could lead to habitat loss

Deforestation

Loss of land (which should be used for food production)

Only grows in hot/tropical climates

High cost of transporting palm oil (from the tropical countries) **if not already awarded for M2**

Palm plants take a long time to grow

(1)

Section C

Question Number	Correc	t Answer				Reje	ct	Mark
17								2
(a)(i)								
		CH ₂ CHCHCH ₂	CO	H ₂ O	HOOC(CH ₂) ₄	СООН		
	Δ <i>H</i> I _{lf}	+109.9	-110.5	-285.8	-994.3	3		
	/ kJ mol ⁻¹							
	<u>গ</u> /	278.7	197.6	69.9	250.0			
	J mol ⁻¹ K ⁻¹							
	4 value	es correct (2	2) marks	1	<u> </u>			
		alues correc						

Question Number	Correct Answer	Reject	Mark
17 (a)(ii)	$\begin{bmatrix} -994.3 - [+109.9 + (2 \times -110.5) + (2 \times -285.8)] \end{bmatrix}$ (1)		2
	$= -311.6 \text{ (kJ mol}^{-1}) $ (1)		
	Allow TE from (a) NOTE If both -110.5 and -285.8 are not doubled, answer CQ = -707.9 (kJ mol ⁻¹) for 1 mark Ignore SF except 1 SF		

Question Number	Correct Answer	Rejec t	Mark
17 (a)(iii)	250(.0) - [278.7 + (2 x 197.6) + (2 x 69.9)]		2
	(1)		
	$= -563.7 \text{ (J mol}^{-1} \text{ K}^{-1}\text{)}$ (1)		
	Allow TE from (a)		
	NOTE If both 197.6 and 69.9 are not doubled, answer $CQ = -296.2$ (J $mol^{-1} K^{-1}$) for 1 mark Ignore SF except 1 SF		

Question Number	Correct Answer	Reject	Mark
17	ΔS_{surr} at 298 K = $-\Delta H/T$		3
(a)(iv)	$= - (-311.6 \times 1000) / 298$ (1)		
	= (+) 1045.6 (J mol ⁻¹ K ⁻¹)		
	Allow TE from (a)(ii) e.g. $\Delta S_{surr} = (+)2375.5(0)$ (J mol ⁻¹ K ⁻¹) scores (2) if no doubling in (a)(ii)		
	(1)		
	$\Delta S_{tot} = \Delta S_{surr} + \Delta S_{sys} / \Delta S_{tot} = 1045.6 - 563.7$		
	$/ \Delta S_{tot} = (+) 481.9 (J mol^{-1} K^{-1})$		
	Allow TE from (a)(ii) and (a)(iii)		
	(1)		
	Allow correct answers given in $kJ \text{ mol}^{-1} \text{ K}^{-1}$ e.g. 0.4819 $kJ \text{ mol}^{-1} \text{ K}^{-1}$		
	Ignore SF except 1 SF		
	If candidates forget to convert ΔH into J mol ⁻¹ , then $\Delta S_{tot} = -562.7$ (J mol ⁻¹ K ⁻¹) would score (2) if correct working is included		

0	C	D - ! L	Marila	
Question	Correct Answer	Reject	Mark	
Number			_	
17	(Decrease in T)		3	
(a)(v)				
	1st mark: consideration of ΔS _{system}			
	ΔS_{system} is not (significantly) changed / is			
	unchanged / remains (approximately)			
	constant			
	(1)			
	(-)			
	2nd mark: consideration of ΔS _{surr}			
	ΔS_{surr} or $-\Delta H/T$ is more positive / larger /			
	greater			
	COMMENT			
	ALLOW			
	'less negative'			
	(1)			
	(-)			
	3rd mark: consideration of ΔS_{total}			
	(So) increases ΔS_{tot} / makes ΔS_{tot} more			
	positive / makes ΔS _{tot} greater			
	(1)			
	NOTE			
	IF no reference / an incorrect reference			
	made to ΔS_{system} , then only the 2nd and 3rd			
	marks can be awarded			
	marks can be awarded			
	NOTE			
	If candidate states that ΔS_{surr} becomes less			
	+ve , no M2			
	But if then states CQ that ΔS_{tot} decreases			
	award M3 as a TE			
	awata 115 as a TL			

Question Number	Correct Answer	Reject	Mark
17 (b)	DIMINISHING:		2
	(Peak between) 1669 – 1645 (cm ⁻¹) (due to C=C)		
	OR		
	(Peak between) 3095 – 3010 (cm ⁻¹) (due to alkene C-H)		
	(1)		
	INCREASING:		
	(Peak between) 1725 – 1700 (cm ⁻¹) (due to C=O in carboxylic acid)	1740 - 1720	
	OR		
	(Peaks due to alkane C-H bonds at)		
	EITHER 2962 - 2853 (cm ⁻¹)		
	OR		
	1485 - 1365 (cm ⁻¹)		
	ALLOW		
	(Peak between) 3300 – 2500 (cm ⁻¹) (due to O–H in carboxylic acid)	3750 - 3200	
	(1)		

Question Number	Correct Answer	Reject	Mark
17 (c)	(Makes it taste) sour / sharp / tart	fruity	1
	IGNORE 'acidic' / 'bitter'	sweet(er)	
	NOTE	none	
	Contradictory answers (e.g. 'sharp and sweeter') score (0)		

Question	Correct Answer	Reject	Mark
Number			
17 (d) (i)	1st mark: (% of oxygen =) 43.9 (%)		3
	(1)		
	2nd mark:		
	Amount of C = $49.3/12 = 4.1 \text{ (mol)}$ Amount of H = $6.8/1 = 6.8 \text{ (mol)}$ Amount of O = $43.9/16 = 2.7 \text{ (mol)}$		
	3rd mark:		
	Ratio 1.5 C : 2.5 H : 1 O (≡3 C : 5 H : 2 O)		
	ALLOW for 3rd mark:-		
	Decimal values that round up to these values (e.g. 1.497 C : 2.478 H : 1 O scores the 3rd mark)		
	(1)		
	ALLOW		
	$M_{\rm r}$ of $C_3H_5O_2 = 73$ (g mol ⁻¹)		
	(1)		
	$%C = \frac{36}{73} \times 100 = 49.3\%$		
	and		
	$%H = \frac{5}{5} \times 100 = 6.8\%$		
	(1)		
	%O = 43.9% ALLOW 43.8%		
	(1)		

Question Number	Correct Answer			Reject	Mark
17 (d) (ii)	For 'Chemical shift' column, allow any range or any single value within range				4
	Feature of compound Q	Chemical shift / ppm	Splitting pattern		
	CH ₃	0.1 - 1.9	Triplet		
			(1)		
			Allow (splits into) three		
	CH ₂	1.7 - 3(.0)	Quartet (1)		
		(1)	Allow quadruplet / (splits into) four		
	ОН	10(.0) - 12(.0) (1)	singlet		

(TOTAL FOR QUESTION 17 = 22 marks)

Total for paper = 90 marks

