ResultsPlus

Examiners' Report January 2010

GCE Chemistry 6CH04/01

look forward to better exam results
www.resultsplus.org.uk

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 0844576 0025, our GCSE team on 0844576 0027, or visit our website at www.edexcel.com. If you have any subject specific questions about the content of this Examiners' Report that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:
http://www.edexcel.com/Aboutus/contact-us/

Alternatively, you can speak directly to a subject specialist at Edexcel on our dedicated Science telephone line: 08445760037

ResultsPlus

ResultsPlus is our unique performance improvement service for you and your students.
It helps you to:

- Raise attainment - by providing in-depth analysis of where your class did well and not so well, enabling you to identify areas to focus on/make improvements.
- Spot performance trends at a glance by accessing one-click reports. You can even choose to compare your cohort's performance against other schools throughout the UK.
- Personalise your students' learning by reviewing how each student performed, by question and paper you can use the detailed analysis to shape future learning.
- Meet the needs of your students on results day by having immediate visibility of their exam performance at your fingertips to advise on results.

To find out more about ResultsPlus and for a demonstration visit http://resultsplus.edexcel.org.uk/home

January 2010
Publications Code UA022679
All the material in this publication is copyright
© Edexcel Ltd 2010

General

Section A of the paper contained questions that were found to be straightforward by the majority of candidates. The average mark for the multiple-choice component of the paper was just over $14 / 20$. The structured questions in Sections B and C, however, proved to be far more demanding - such as Q26, which required candidates to use high resolution nmr spectra in order to identify the structural formulae of two unknown compounds. Examiners gave candidates every opportunity to show their knowledge and understanding in this paper. For example, when marking Q25 it was often found that the correct answer to Q25(a) was given by candidates as part of their answer to Q25(b)(v) rather than as their response to Q25(a). If so, the mark for Q25(a) was duly awarded. A similar principle was applied to the marking of Q26(a), where candidates often included answers to this part within their answer to Q26(b).

Question 21

In (a), many candidates were able to define pH and calculate the pH of a strong acid. In (b)(i), many very good answers were seen with the pH of the ethanoic acid correctly calculated and the assumption clearly stated.

Resulisplus

Examiner Comments

Some clear and concise answers were seen, as shown by this response which scored full marks.
(b) Ethanoic acid is a weak acid with an acid dissociation constant, K_{4}, of value $1.75 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}$ at $25^{\circ} \mathrm{C}$.
(i) Calculate the pH of $0.0100 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ ethanoic acid at $25^{\circ} \mathrm{C}$, stating any ONE assumption that you have made.

$=\frac{\left[\mathrm{H}^{+}\right]^{2}}{\left[\cot _{2} \cos t\right]}$
$\Rightarrow\left[H^{+}\right]=\int k_{a} \times\left[\mathrm{CH}_{3} \cos H\right]^{2}=4+8 \times 10^{-4} m^{4} \mathrm{~mol}^{-3}$
$p H=-\log _{10}\left(4.18 \times 10^{-4}\right)=3.38$
(4)

Assumption...The concentration of $\mathrm{CH}_{3} \mathrm{COOH}$ after dissociation
is the same as the 'nffied concentration.

ResulisPlus

Examiner Comments

In other answers, such as the one below, the mark for the correct assumption (here $\left[\mathrm{H}^{+}\right]=\left[\mathrm{CH}^{3} \mathrm{COO}\right]$) was awarded from what was written in the working rather than for what was written in the space provided after the calculation.
(b) Ethanoic acid is a weak acid with an acid dissociation constant, K_{a}, of value $1.75 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}$ at $25^{\circ} \mathrm{C}$.
(i) Calculate the pH of $0.0100 \mathrm{~mol} \mathrm{dm}^{-3}$ ethanoic acid at $25^{\circ} \mathrm{C}$, stating any ONE assumption that you have made.

Assume ethanaic acid party dissociates. (4)

$$
\mathrm{PCH}_{3} \mathrm{COOH}_{\text {ci }} \rightleftharpoons \mathrm{H}_{\text {ca }}^{+}+\mathrm{CH}_{3} \mathrm{COO}_{\text {cq }}^{-}
$$

$$
\begin{aligned}
\mathrm{Ka}_{a} & =\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{CH}_{3} \mathrm{COO}^{\circ}\right]}{\left[\mathrm{CH}_{3} \mathrm{COHH}^{2}\right]} \\
\therefore\left[\mathrm{H}^{+}\right] & =\left[\mathrm{CH}_{3}\right]
\end{aligned}
$$

$$
\left[H^{+}\right]=\sqrt{\left(1.76 \times 10^{-7}\right)(0.0100)}
$$

$$
=4.18 \times 10^{-14} \mathrm{~mol}^{-3} \mathrm{dm}^{-3}
$$

$$
\mathrm{PH} \text { of ethanvic acid }=3.38=(\text { to } 3 \mathrm{s.f})
$$

Assumption

Ethanoic acid partly dissociates.

Part (b)(ii) was found to be extremely challenging. Correct answers were few and far between. Despite this concept being clearly flagged up in the Specification (see Topic 4.7 f (ii)), many candidates were unaware that the degree of dissociation of the weak acid increases on dilution.

In the case of hydrochloric acid, dilution by a factor of 10 increases the pH by one unit. Suggest why ethanoic acid behaves differently.

$$
\begin{aligned}
& \text { Because of the following equilibarm } \\
& \mathrm{CH}_{2} \mathrm{COOH}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{CH}_{3} \mathrm{CO0}^{\circ}+\mathrm{H}_{3} \mathrm{O}^{\circ} \\
& \text { diluting the solution by ally the will does aq.libeine } \\
& \text { to the riot is it wm fill } 4 \text { cheteles piocipe Trefore } \mathrm{H}^{+} \text {ion } \\
& \text { in He fin of yO ir ode far } k \text { or pelted ioceray }\left[\mathrm{H}^{\prime}\right] \text { ad } \\
& \text { devenng if ht This ard comerant he } i \text { hwewirg pto due } \\
& \text { to duration se incoux i. only by } 0.5 \mathrm{mb}
\end{aligned}
$$

ResulisPlus

Examiner Comments

An alternative approach to answering this question was a mathematical one as illustrated here.

Hydrochloric is a strong acid, therefore a 10 ten-fold
solution corresponds to ${ }^{\text {a }}$ ten-foll change in HH^{+} concentration.
However, ethanse oust is a weak act ard therefore
the H^{+}concentration es is related to the acre concentration
in the following manner: $\left[H^{+}\right]=\sqrt{\left.k_{a}\left[A_{0}\right)^{2}\right]}$. Hence drutior
by a factor of 10 results in a functor of $\frac{1}{\sqrt{10}}$ for the $\left[4^{+}\right]$,
leasing to the result it a PA change of 0.5 .
In (c)(ii), the definition of the term "buffer solution" was frequently given correctly. For example:-
(c) Orange marmalade usually contains sodium citrate as a preservative. Together with the fruit in the marmalade, it forms a buffer solution which, at a suitable pH , inhibits mould growth.
(i) Define the term buffer solution.

$$
\begin{aligned}
& \text { A solution which resists charges is } p^{\prime \prime} \\
& \text { when small quantities of ait or bare } \\
& \text { ore oulded }
\end{aligned}
$$

Some answers, nonetheless, stated that the pH of the buffer solution remained constant, rather than almost constant, on addition of small amounts of acid or base.

GCE Chemistry 6CH04/01

(i) Define the term buffer solution.

(2)

Buffer solution maintains pH constant when swall amounts of acids or bases ave anded.

In (c)(iii), the best answers explaining how a buffer solution works were those which contained relevant equations and concise sentences.

Resuilisplus

Examiner Comments

This response shows an example of a well set-out answer scoring full marks.
(iii) Explain how a buffer solution works using this system or any other of your choice. Support your explanation with equations.

```
    A busffer is made of a weak acid and its aswr.
```

Ths soalt fully dibsocietzs end pcatiaces ca restervir.
of A^{*} ions, in thi conse of mexhonnoic ofil + boditeon

siignithy ino \& produmes a reservir of HLOOH.
When cous is conded.
$\mathrm{H}^{+}+\mathrm{HCOO}^{-} \rightarrow \mathrm{HCOOH}$
when colkianioi is added
$\mathrm{HCOOH}+\mathrm{OH}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{HCOO}^{-}$
The chounges in $\mathrm{H} N O H$ and HCOO cancentration care
very gemioul relative to the ofiginal concenzeatiorts.

Question 22

This question required answers exhibiting a high quality of written communication. The essential points that had to be made were that there is no hydrogen bonding in ethanal (whereas there is in ethanol and in ethanoic acid), that hydrogen bonds are the strongest of the intermolecular forces and, finally, any relevant point focusing on a reason why overall the strongest intermolecular forces exist between ethanoic acid molecules (as this substance has the highest boiling temperature of those mentioned in the question):-

Answers to Q22(b) showed an excellent knowledge of chemical tests encountered in the study of carbonyl chemistry. In (c)(i), many good mechanisms were seen although a lack of precision was noticeable if structural formulae were drawn too small. Inaccuracy in the position of the head and the tail of each curly arrow was more likely to occur in such cases. Many candidates remain under the impression that a curly arrow represents the movement of an atom or group of atoms to form a new linkage rather than the movement of an electron pair. In (c)(ii), the role of the potassium cyanide, KCN, in order to increase the concentration of the attacking nucleophile, CN -, was rarely known. In (c)(iii), many candidates were aware that a racemic mixture is produced, but the planar geometry around the carbon in the $\mathrm{C}=\mathrm{O}$ group was often not mentioned. Confusion with other mechanisms, such as $\mathrm{S}_{\mathrm{N}} 1$ or $\mathrm{S}_{\mathrm{N}} 2$, was evident.

Resulisplus

Examiner Comments

An excellent answer to Q22(c) demonstrating clear understanding.
(c) Ethanal reacts with HCN , in the presence of a catalyst of cyanide ions from KCN , to give a cyanohydrin, $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CN}$.
(i) Give the mechanism for this reaction.

(ii) Explain why it is necessary to use HCN and KCN in this reaction, rather than HCN on its own.
(1)

ACN -ones very weakly and therefore does not produce supforent CN Tons. KCN ionises fully and profiles these ions.
*(iii) Explain why the product mixture from this reaction is not optically active.
The carbonyl group is ethemal is planar and therefore coin be attukel froe above or below with equal probibnity. Foes, Therefore, two enanstromers are forever in equal proportions and their effects cancel out. The poodent' is a racemic mixture.

Question 23

This was found to be a highly demanding question. In (a)(i), the reason for keeping the concentrations of both propanone and the hydrogen ions in large excess was poorly understood. $\operatorname{In}(\mathrm{a})($ (ii), the fact that doubling the initial concentration of propanone, whilst keeping the initial concentrations of hydrogen ions and iodine constant, would double the rate of reaction was not known. Also, very few candidates realised that the gradient of the straight line of the plot of $\left[1_{2}\right]$ against time would be twice as steep in these circumstances. Answers to (a)(iii) were, however, more convincing.
(iii) Explain why the minimum number of steps in the mechanism for this reaction is two.

A significant number of candidates found it difficult to write the ionic equation in (b)(i) and the equation for the iodoform reaction in (b)(ii). A mark was awarded in (b)(iii), however, for the correct formula of triiodomethane, CHI_{3}.

Question 24

Part (a) proved straightforward for many candidates, although K_{p} expressions containing square brackets appeared more often than one might expect. This showed that, in some candidates' minds, there is still confusion between K_{p} and K_{c}. In (b)(i), a common error was the misconception that, since the position of equilibrium I shifts to the left when the total pressure increases, it follows that " K_{p} decreases" under these circumstances. In (b)(ii), very few candidates were able to justify, mathematically, why an increase in total pressure lead to a decrease in yield of carbon monoxide and hydrogen in reaction I despite the fact that K_{p} remains constant. The vast majority of candidates applied Le Chatelier's Principle, instead, to justify the equilibrium position shifting to the left when increasing the total pressure. Few correct answers to (b)(iii) were seen, with only a minority of candidates referring to active sites. So 3/6 was a typical mark for Q24(a) and (b).

GCE Chemistry 6CH04/01

(a) Write the expression for the equilibrium constant, K_{p}, for reaction \mathbf{I}.

$$
\begin{equation*}
K_{p}=\frac{p(\mathrm{CO}) \times p\left(\mathrm{H}_{2}\right)^{3}}{p\left(\mathrm{CH}_{4}\right) \times p\left(\mathrm{H}_{2} \mathrm{O}\right)} \tag{1}
\end{equation*}
$$

(b) Reaction I occurs at a temperature of 1000 K and a pressure of 30 atm over a nickel catalyst.
(i) State and explain the effect, if any, on the value of K_{p} of increasing the pressure on the reaction.

It has no effect on K_{p} because K_{p} only changes when temperature increases.
(ii) Explain, in terms of your answers to (a) and (b)(i), why an increase in the pressure leads to a decrease in yield in reaction \mathbf{I}.

There are more moles of products on the right hand side of the reaction. Increase in pressure does not change K_{p} as k_{p} is a constant, out the concentration of products will lower Therefore it leads to a decrease in yield. at equal the left

Resuilsplus

Examiner Comments

This scores 3 marks; 1 mark for each part (a), (b)(i) and (b)(ii).

Examiners saw many excellent answers to the calculation in (c). The steps were well laid out and easy to follow. However, a number of candidates were unable to deduce the molar amounts of each substance present at equilibrium. Consequential marking allowed the remaining available marks to be awarded in such cases.

Calculate the value of K_{p} showing your working.
(3)

Part (d)(i) was well-answered, with 75% of all candidates scoring the mark for this question. However, in (d)(ii), a surprising number of candidates were unable to write the equation for the thermal decomposition of potassium hydrogencarbonate, KHCO_{3}, despite two of the three products being given in the stem of the question. In (e), many candidates understood that industrial processes are rarely allowed to reach equilibrium as the products are removed, although a considerable minority answered this question in terms of only "cost", without any further comment.

Question 25

Part (a) was not answered well but, as explained earlier in this report, many candidates were awarded this mark from their answer to (b)(v) when explaining why the reaction was spontaneous. For (b)(i), a substantial number of candidates were unable to look up the entropy data correctly from the data booklet.

In (b)(ii), consequential marking from answers to (b)(i) enabled access to both available marks. A significant minority of candidates gave a value of S^{\ominus} for $\mathrm{Fe}(\mathrm{s})$ as zero, showing that there was confusion between standard molar entropy values of an element with those of the standard enthalpy change of formation of an element.

In (b)(iii), there were many correct answers, but some candidates did not convert the standard enthalpy change for the reaction into $\mathrm{J} \mathrm{mol}^{-1}$ from $\mathrm{kJ} \mathrm{mol}^{-1}$ and/or convert the temperature of $25^{\circ} \mathrm{C}$ into K .

GCE Chemistry 6CH04/01

In (b)(iv), the total standard entropy change for the reaction was often calculated correctly, but the + sign was then omitted from the final answer. Most candidates scored some marks on (b)(v), but many candidates did not mention that the heat energy released from the exothermic reaction would increase the movement of the molecules, hence the disorder, in the surroundings.

Resuisplus

Examiner Comments

This is a very good answer to this question.
(a) Explain the meaning of spontaneous in a thermodynamic context.

Once the asisunution energy has bean rewhel, a reuciso wall 7 g go to completion on its own.
(b) (i) Find the values of the standard molar entropies of iron and of iron(III) oxide from your data booklet.

$$
\begin{aligned}
& \text { Ye: } S^{\theta}=27.3 \mathrm{Imol}^{-1} k^{-1} \\
& \mathrm{He}_{2} \mathrm{O}_{3}: S^{\theta}=87.25 \mathrm{~mol}^{-1} k^{-1}
\end{aligned}
$$

(ii) The standard molar entropy at 298 K for oxygen molecules O_{2} is $+205 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$.

Calculate the standard entropy change of the system for the reaction between iron and oxygen. Include a sign and units in your answer.

$$
\begin{align*}
\Delta S_{S Y Y} & =\sum S_{\text {product }}-\sum S_{\text {contents }} \tag{2}\\
& =(2 \times 87.4)-(4 \times 27 \cdot 3)-(205 \times 3) \\
& =-549.4+J \mathrm{Jmol}^{-1} \mathrm{k}^{-1}
\end{align*}
$$

(iii) The standard enthalpy change for the reaction at $25^{\circ} \mathrm{C}$ is $-1648 \mathrm{~kJ} \mathrm{~mol}^{-1}$.

Calculate $\Delta S_{\text {wernediess }}$

$$
\begin{align*}
\Delta S_{\text {surf. }} & =\frac{-\Delta H}{T} \tag{1}\\
& =\frac{1648000}{25+273} \\
& =\frac{1648000}{298}=+5530 \mathrm{Jmst}^{-1} k^{-1}
\end{align*}
$$

(iv) Use your answers to (b)(ii) and (iii) to calculate the total standard entropy change for the reaction. Include a sign and units in your answer.

${ }^{\dagger}(v)$ The reaction is thermodynamically spontaneous.
Use your answers to (b)(ii), (iii) and (iv) to explain, in terms of the physical states of the substances in the reaction and the movement of the molecules in the surroundings, why this is so.
(2)
(3)

The system itself becomes more ordered as a gas is bering tomes into a solve. However, the surroundings become much more disordered since a lot of heat π evolved and this exotes nearby air molecules. Hers, Qverall, the large increase in movement of the as molecules outweigh the relatively small increase in order of the products, and the reaction is spartioneous.

Question 26

This proved to be a demanding and discriminating question. In (a), many candidates earned one mark for identifying the peak at around $3400 \mathrm{~cm}^{-1}$ on the IR spectrum and a second mark for this peak being due to X containing an - OH group or X being an alcohol. Candidates often then identified \mathbf{Y} as being an aldehyde or a ketone. Those candidates who decided at this stage that Y must be butanal then ran into difficulties in (b). Many candidates found the high resolution nmr spectra in (b) challenging. There was often confusion between nmr and IR or mass spectroscopy. The peaks on both nmr spectra were frequently assigned to bonds or fragments within each molecule. The $(\mathrm{n}+1)$ rule, which is used to explain splitting patterns, was also applied incorrectly by many candidates. Examiners were surprised how infrequently references were made to hydrogen (or proton) environments within the molecules of X and Y . That said, some logical and well-argued responses were seen, often in cases where the displayed formulae of X and Y were drawn out and annotated.

What can be deduced about the structures of \mathbf{X} and \mathbf{Y} using all this information and the data booklet? Justify your answer.
(4)

$$
\begin{gathered}
\text { (compound } x \text { - broddpear at } 3400 \text { indicating } O-H \text { group (alcohol) } \\
\text { - peale at } 2900-300 \text { indicating C-H (allege) } \\
\therefore x \text { is an alcohol (cannot be tertiary, as'con be oxidised) } \\
\text { compound } y \text { - is produced from the oxidation of } x \text { (an alcond) } \\
y \text { must be either an aldende, Ketone - }
\end{gathered}
$$

Resuisplus

Examiner Comments

This is a very well-structured answer.

Advice to candidates

- Make sure you understand data which shows how the pH of a strong acid and a weak acid changes after dilution 10, 100 and 1000 times.
- Make sure you know your way around your data booklet.
- When doing entropy calculations, always consider both the sign and units of your answer.
- Practise interpreting the use of high resolution nmr spectra to identify the structure of a molecule.
- Make sure you understand how the position of an equilibrium can shift even though K_{p} remains constant when the total pressure is altered.

Grade boundaries for GCE 08 Chemistry

6CH01/01

Grade	Max. Mark	A	B	C	D	E
Raw boundary mark	80	48	41	35	29	23
Uniform boundary mark	120	96	84	72	60	48

6CH02/01

Grade	Max. Mark	A	B	C	D	E
Raw boundary mark	80	51	45	39	33	27
Uniform boundary mark	120	96	84	72	60	48

6CH04/01

Grade	Max. Mark	A	B	C	D	E
Raw boundary mark	90	56	50	44	38	33
Uniform boundary mark	120	96	84	72	60	48

Maximum Mark (Raw): the mark corresponding to the sum total of the marks shown on the mark scheme.

Boundary Mark: the minimum mark required by a candidate to qualify for a given grade.

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623467467
Fax 01623450481
Email publications@linneydirect.com
Order Code UA022679 January 2010

Llywodraeth Cynulliad Cymru
Welsh Assembly Government

For more information on Edexcel qualifications, please visit www.edexcel.com/quals

Rewarding Learning

