

Mark Scheme (Results)

Summer 2017

Pearson Edexcel GCE in Chemistry (9CH0) Paper 03 General and Practical Principles in Chemistry

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u> for our BTEC qualifications.

Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

If you have any subject specific questions about this specification that require the help of a subject specialist, you can speak directly to the subject team at Pearson. Their contact details can be found on this link: <u>www.edexcel.com/teachingservices</u>.

You can also use our online Ask the Expert service at <u>www.edexcel.com/ask</u>. You will need an Edexcel username and password to access this service.

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2017 Publications Code 9CH0_03_1706_MS All the material in this publication is copyright © Pearson Education Ltd 2017

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Mark schemes will indicate within the table where, and which strands of QWC, are being assessed. The strands are as follows:

i) ensure that text is legible and that spelling, punctuation and grammar are accurate so that meaning is clear
ii) select and use a form and style of writing appropriate to purpose and to complex subject matter
iii) organise information clearly and coherently, using specialist vocabulary when appropriate

Using the Mark Scheme

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.

/ means that the responses are alternatives and either answer should receive full credit.

() means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.

Phrases/words in **bold** indicate that the <u>meaning</u> of the phrase or the actual word is **essential** to the answer. ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

- write legibly, with accurate use of spelling, grammar and punctuation in order to make the meaning clear
- select and use a form and style of writing appropriate to purpose and to complex subject matter
- organise information clearly and coherently, using specialist vocabulary when appropriate.

Full marks will be awarded if the candidate has demonstrated the above abilities.

Questions where QWC is likely to be particularly important are indicated (QWC) in the mark scheme, but this does not preclude others.

Question Number	Acceptable Answers		Additional Guidance	Mark
1(a)(i)			Examples of equation	(2)
	All species and balancing correct	(1)	Cr(OH) ₃ (s) + 3H ₂ O(I) + 3H ⁺ (aq) → [Cr(H ₂ O) ₆] ³⁺ (aq) Or Cr(OH) ₂ (s) + 3H ₂ O ⁺ (aq) → [Cr(H ₂ O) ₂] ³⁺ (aq)	
	All state symbols correct	(1)	Or [Cr(OH) ₃ (H ₂ O) ₃](s) + 3H ⁺ (aq) on LHS as an alternative	
			Allow correct equations for sequential protonation e.g. $[Cr(OH)_3(H_2O)_3](s) + H^+(aq) \rightarrow [Cr(H_2O)_4(OH)_2]^+(aq)$	
			M2 consequential on M1 being awarded, or a 'near- miss' e.g. Cl^{-} on both sides / one missing charge	

Question Number	Acceptable Answers	Additional Guidance	Mark
1(a)(ii)	A description that makes reference to the following points:		(2)
	• green solid / grey-green solid (1)	Allow ppt/precipitate for solid	
	• forms green solution (1)	Allow purple /violet /ruby solution	
		Do not award yellow-green / red / blue-green bubbles etc means MP2 should not be awarded	
		Ignore adjectives to describe green e.g. pale	

Question Number		Acceptable Answers		Additional Guidance	Mark
1(a)(iii)				Examples of equation	(2)
	•	all species and balancing correct all state symbols correct	(1) (1)	Cr(OH) ₃ (s) + 3OH ⁻ (aq) → [Cr(OH) ₆] ^{3–} (aq) Or [Cr(OH) ₃ (H ₂ O) ₃](s) + 3OH ⁻ (aq) → [Cr(OH) ₆] ^{3–} (aq) + 3H ₂ O(l) Allow Cr(OH) ₃ (s) + OH ⁻ (aq) → [Cr(OH) ₄] ⁻ (aq) Or [Cr(OH) ₅ (H ₂ O)] ^{2–} (aq) as complex ion on RHS, with rest of equation correctly balanced M2 consequential on M1 being awarded, or a 'near-miss'	

Question Number	Acceptable Answers	Additional Guidance	Mark
1(a)(iv)	An answer that makes reference to the following point:	Ignore	(1)
		'Qualifiers' for any colour	
	green and solution	(e.g. `dark', `deep', etc)	

Question Number	Acceptable Answers	Additional Guidance	Mark
1(b)(i)	A description that makes reference to the following points:		(2)
	• (blue solution initially forms pale) blue precipitate (1)	Allow `solid' / `ppt' for `precipitate' Do not award for `blue crystals' Do not allow dark blue ppt	
	• (which dissolves to) form dark/deep/royal blue solution (1)		

Question Number	Acceptable Answers		Additional Guidance	Mark
1(b)(ii)	$[Cu(H_2O)_6]^{2+} + 4NH_3 \rightarrow [Cu(NH_3)_4(H_2O)_2]^{2+} + 4H_2O$		Ignore state symbols even if incorrect Ignore balanced sulfate ions	(2)
	LHS of equation correct	(1)	Do not award just Cu ²⁺ on LHS	
	• RHS of equation correct	(1)	Allow $[Cu(OH)_2(H_2O)_4] + 4NH_3 \rightarrow$ $[Cu(NH_3)_4(H_2O)_2]^{2+} + 2H_2O + 2OH^{-1}$ Do not award for [Cu(NH_3)_4]^{2+} / $[Cu(NH_3)_6]^{2+} \text{ on RHS}$	
			(Total for Question 1 = 11 n	ıarks)

Question Number	Acceptable Answers	Additional Guidance	Mark
2(a)	An answer that makes reference to the following points:	First and second change can be in either order Ignore prior refluxing Ignore water bath	(4)
	 (First change) Adjust so that the flow of water goes in at the bottom of the condenser and out at the top of the condenser (1) 	Allow just "water should enter the condenser at the bottom" OR Just "water should leave at the top" OR Just "swap the tubes around"	
	 (Reason) Keeps condenser full of water / water removes (any) air in the condenser / allows more efficient / better cooling / prevents `air-lock' (1) 		
	• (Second change) (Replace funnel and) seal with a thermometer or a stopper (1)	Allow replacing the funnel with a tap / dropping funnel	
	 (Reason) Prevents vapour / gas / product / reactants escaping (1) 	Ignore thermometers used to measure boiling temperatures	

Question Number	Acceptable Answers	Additional Guidance	Mark
2(b)	OH	Do not penalise 'connectivity' to OH unless O-H-C Allow O-H for OH	(2)
	(1)	Penalise non-skeletal formulae once only	

Question Number		Acceptable Answers	Additional Guidance	Mark
2(c)(i)	•	3-methylbutan-2-ol / secondary alcohols cannot be oxidised to a carboxylic acid OR 3-methylbutanone / the product / ketones cannot be (further) oxidised	Allow only primary alcohols can be oxidised to carboxylic acids	(1)

Question Number	Acceptable Answers	Additional Guidance	Mark
2(c)(ii)	• H ₂ SO ₄	Ignore `sulfuric acid'	(1)

Question Number		Acceptable Answers	Additional Guidance	Mark
2(c)(iii)	•	all formulae correct (1) all state symbols correct (1)	Example of equation: $Na_2CO_3(s) + H_2SO_4(aq) \rightarrow Na_2SO_4(aq) + H_2O(l) + CO_2(g)$ OR $Na_2CO_3(s) + 2H^+(aq) \rightarrow 2Na^+(aq) + H_2O(l) + CO_2(g)$ OR $Na_2CO_3(s) + 2H_2SO_4(aq) \rightarrow 2NaHSO_4(aq) + H_2O(l) + CO_2(g)$ Use of NaCO_3 or H_2CO_3 scores zeroAllow any acid. M_2 concequantial on M1 being awarded, or a 'poor mise'	(2)
			M2 consequential on M1 being awarded, or a 'near-miss'	

Question Number	Acceptable Answers		Additional Guidance	Mark
2(d)(i)	An explanation that makes reference to the following points:			(2)
	 peak at 1720 (cm⁻¹) 	(1)	Allow any absorbance between 1720 to 1700 (cm^{-1})	
	 shows presence of a C=O bond / carbonyl 	(1)	Marks cannot be awarded if ANY incorrect other peaks are identified e.g. peak due to C=C / peak due to O-H	
			Ignore references to alkane C-H bonds / fingerprint region	
			Do not award just 'ketone' for MP2	

Question Number	Acceptable Answers	Additional Guidance	Mark
2(d)(ii)	An answer that makes reference to the following points:		(2)
	 peak between 3750 and 3200 (cm⁻¹) will disappear / will be absent from the spectrum OR Peak(s) above 3000(cm⁻¹) will disappear / will be absent from the spectrum (1) (because) 3-methylbutan-2-ol / the alcohol / O-H has now been removed (1) 	Allow any absorbance between 3750 to 3200 (cm ⁻¹) Ignore references to fingerprint region	

Question Number	Acceptable Answers	Additional Guidance	Mark
2(e)(i)	(identify the peak at the) highest/largest <i>m/z</i> value	Allow Peak (furthest) to the right/last peak on the spectrum Do not award the mark for	(1)
		"largest peak" / "highest peak" Ignore "parent ion" / molecular ion peak / References to <i>m</i> / <i>z</i> = 86	

Question Number	Accept	table Answers	Additional Guidance	Mark
2(e)(ii)	H H H HCH +	H O HC+ 	Allow positive charge anywhere on structure	(2)
		н	Ignore open bonds	
	(1)	(1)	Penalise non-displayed formulae once only	
			Ignore brackets around the structure	
			Penalise missing charge once only	

Question Number	Acceptable Answers	Additional Guidance	Mark
2(f)(i)	$C_5H_{12}O + [O] \rightarrow C_5H_{10}O + H_2O$	Molecular formulae must be used throughout	(2)
	 left-hand side of equation correct (1) 	Allow [O] above the arrow	
	 right-hand side of equation correct (1) 	Do not award for $C_5H_{11}OH$ as the alcohol	
		Ignore state symbols if incorrect or conditions mentioned	

Question Number	Acceptable Answers	Additional Guidance	Mark
2(f)(ii)		Example of calculation	(2)
	• calculation of moles of both of $C_5H_{10}O$ and $C_5H_{12}O$ (1)	Moles $C_5H_{10}O = \frac{2.15}{86.0} = 0.025(0)$ (mol)	
		and moles $C_5H_{12}O = 0.025(0) \times 100 = 0.04(00)$ 62.5	
	• calculation of mass of $C_5H_{12}O$ (1)	(So) mass of $C_5H_{12}O = 0.04(00) \times 88 = 3.52 \text{ g}$	
	OR		
	• calculation of theoretical mass of $C_5H_{10}O$ and moles of $C_5H_{10}O$ (1)	Theoretical mass $C_5H_{10}O = \frac{2.15}{62.5} \times 100 = 3.44 \text{ g}$ and	
		moles $C_5H_{10}O = \frac{3.44}{86.0} = 0.04(00) = mol C_5H_{12}O$	
	• calculation of mass of $C_5H_{12}O$ (1)	(So) mass of $C_5H_{12}O = 0.04(00) \times 88 = 3.52 \text{ g}$	
		Correct answer with no working scores (2)	
		Allow TE from MP1 Award 1 mark for 3.36 g, 1.375 g or 2.2 g	

(Total for Question 2 = 21 marks)

Question Number	Acceptable Answers	Additional Guidance	Mark
3(a)	2,6-diaminohexanoic acid	Allow 2,6-diamin e hexanoic acid	(1)
		Ignore any additional commas or hyphens or spaces	
		Do not award 2,6-dia mm inohexanoic acid	

Question Number	Acceptable Answers	Additional Guidance	Mark
3(b)	• Deprotonated structure (1 $H_2NCH_2CH_2CH_2CH_2 - C - COO^-$ (Na ⁺) NH_2	 Allow displayed /structural /condensed formulae Allow NH₂- Allow -CO₂- Allow -COONa but penalise if O-Na covalent bond is shown 	(3)
	• Protonated structure (1 H_{3}^{+} H ₃ NCH ₂ CH ₂ CH ₂ CH ₂ -CCOOH (2Cl ⁻) +NH ₃) Both NH_2 groups must be protonated Allow NH_3^+ - / ^+H_3N - Allow $-CO_2H$	
	• Ester structure (1 H ₂ NCH ₂ CH ₂ CH ₂ CH ₂ CCOOCH ₃	 Allow CO₂CH₃ Allow NH₃⁺- or NH₂- for each amine group Penalise wrong side chain only once If alanine used throughout then only MP3 can be awarded 	

Question Number	Acceptable Answers	Additional Guidance	Mark
3(c)	Any one of: H O H CH ₃ H ₂ NCH ₂ CH ₂ CH ₂ CH ₂ —C C OOH $H_{2}NCH_{2}CH_{2}CH_{2}CH_{2}$ —C OOH H_{2} H O H CH ₂ CH ₂ CH ₂ CH ₂ NH ₂ H O H CH ₂ CH ₂ CH ₂ CH ₂ NH ₂ H O H CH ₂ CH ₂ CH ₂ CH ₂ NH ₂ H O H CH ₂ CH ₂ CH ₂ CH ₂ NH ₂ H O H CH ₂ CH ₂ CH ₂ CH ₂ NH ₂ H O H CH ₂ CH ₂ CH ₂ CH ₂ NH ₂ H O H H	Must be the dipeptide and not the repeat unit Allow -CO ₂ H Allow -H ₂ N Allow -CONH- / -COHN- unless C-H-N Allow zwitterions or cyclic dipeptides Allow skeletal / part-skeletal formulae	(1)
	OR H O H H H H H H H H H H H H H H H H H H		

Question Number	Acceptable Answers		Additional Guidance	Mark
3(d)	An explanation that makes reference to the following points:		Ignore comments on retention time, solubility, polarity, dipoles or intermolecular forces	(2)
	 (In acidic conditions) lysine (ion) has two positive charges (whereas alanine has only one) 	(1)	Allow `greater positive charge' Allow lysine has 2 $\rm NH_2$ groups that can be protonated	
	 (So lysine ion has) has greater attraction for the stationary phase 	(1)	Allow 'greater affinity for stationary phase' 'adheres better to stationary phase' 'better a d sorption onto stationary phase' Allow 'polar phase' for 'stationary phase' Allow reverse argument for alanine	
			Mark points M1 and M2 independently	

(Total for Question 3 = 7 marks)

Question Number		Acceptable Answers	Additional Guidance	Mark
4(a)	• 1.60	(1)	Do not award MP1 for "1.6" (must be to 2 D.P.)	(2)
	• (+) 42.5	(1)	Do not award MP2 for "42.50" (must be to 1 D.P.)	
			Penalise D.P. error once only	

Question Number	Acceptable Answers	Additional Guidance	Mark
4(b)	$CH_3OH(I) + 1.5O_2(g) \rightarrow CO_2(g) + 2H_2O(I)$		(2)
	Balanced equation (1)	Do not award multiples (enthalpy change is for the complete combustion of one mole) for MP1	
	• State symbols an correct (1)	MP2 depends on the award of MP1 or correct species	

Question Number	Acceptable Answers		Additional Guidance	Mark
4(c)	Calculation of energy change	(1)	Example of calculation (= $mc\Delta T$ = 150 x 4.18 x 42.5 =) 26647.5 (J)	(4)
	 Calculation of moles of CH₃OH 	(1)	Moles CH ₃ OH = 1.60/32 (= 0.05(00))	
	 Calculation of energy ÷ moles CH₃OH 	(1)	$\frac{26647.5}{0.05(00)} = 532950 \text{ (J mol}^{-1}\text{)}$ Ignore any signs at this stage	
	 ΔH final answer in kJ mol⁻¹ and negative sign included and ΔH final answer to 2 or 3 S.F. 	(1)	 -533 (kJ mol⁻¹) Or -530 (kJ mol⁻¹) Correct answer with no working gains full marks Penalise incorrect units for MP4 only Allow TE at each stage Allow correct rounding to 2SF or more at each stage 	

Question Number	Acceptable Answers	Additional Guidance	Mark
4(d)(i)	(±)0.7 (%)	Allow from 1 SF up to calculator value correctly rounded where (% uncertainty =) (±) $\frac{1}{150}$ x 100 = 0.6666667 (%)	(1)
		Allow 0.6 or $\frac{2}{3}$ Do not award 0.66/0.6	

Question Number	Acceptable Answers	Additional Guidance	Mark
4(d)(ii)	An answer that makes reference to the following points:	Needs to show combined error in using the 25 cm ³ six times is greater than using 250 cm ³ measuring cylinder once only	(3)
	 Calculation of the % uncertainty using the 25 cm³ measuring cylinder (1) 	Award MP1 EITHER if multiplies errors: $100 \times (0.2/25) \times 6 = 4.8\%$ OR If adds errors $100 \times (1.2/150) = 0.8\%$ Do not sward (0.2 (.25) × 100 = 0.8 %	
	Then any two from:	Do not award $(0.2 / 25) \times 100 = 0.8 \%$	
	 % uncertainty with use of 25 cm³ measuring cylinder is greater (1) 		
	 Repeated use of the small measuring cylinder will lead to greater transfer losses (1) 		
	• Repeated use will take more time (1)	Do not award 'easier' to use larger measuring cylinder	

Question Number	Acceptable Answers	Additional Guidance	Mark
4(d)(iii)	An answer that makes reference to any three of the following points:	Ignore experiment carried out under non-standard conditions	(3)
	• heat/energy loss (to the surroundings) (1)	Ignore just 'no lid'	
	 evaporation of methanol / water from the calorimeter (1) 		
	• incomplete combustion (of methanol) (1)		
	• (specific) heat capacity of the calorimeter/apparatus has been ignored (1)	Allow calorimeter has not been calibrated	

Question Number	Acceptable Answers	Additional Guidance	Mark
4(e)	An explanation that makes reference to the following points:		(2)
	 The second value will be less exothermic / less negative (1) 	Allow 'more positive' or 'smaller in magnitude' Do not accept 'greater' or 'smaller' for 'less negative'	
	 Some energy will be used to boil the water/boiling water is endothermic Water can only be heated to 100°C/ Temperature rise (measured) can only be (a maximum) of 40°C Greater heat losses in the 60°C to 100°C range 	Do not award just "the water boils"	
	(1)	Mark points M1 and M2 independently	

Question Number	Acceptable Answers	Additional Guidance	Mark
4(f)	An explanation that makes reference to the following points:		(2)
	Either student 2's value will be similar / the same 		
	 (As) both the energy change and moles/mass (of methanol) burned will be higher/ Ratio of energy change to moles/mass (of methanol) burned will be the same/ The energy change is proportional to the moles/mass (of methanol) burned 	Allow 'temperature change' for 'energy change'	
	Or • student 2's value will be less negative/ less exothermic (1)	Allow 'more positive' or 'smaller in magnitude' or 'smaller' for 'less negative'	
	 greater heat loss because higher temperature/heated for longer (1) 	Mark points MP1 and MP2 independently within each route	

Question Number	Acceptable Answers	Additional Guidance	Mark
4(g)	 An answer that makes reference to the following points: (Calculated) value of moles (of methanol) burned will be less / too small (1) The calculated value will be more exothermic / more negative (1) 	Allow both marks for a calculation using M_r of 46.0 (instead of 32.0), giving a final ΔH value (approx.) of -766 (kJ mol ⁻¹) Allow 'increase' or 'greater' for 'more negative' MP2 depends on MP1	(2)

(Total for Question 4 = 21 marks)

Question Number	Acceptable Answers	Additional Guidance	Mark
5(a)	C atom of C–Mg bond labelled as δ – and Mg labelled as δ +	Do not award full + or – charge Ignore δ- on Br	(1)

Question Number	Acceptable Answers	Additional Guidance	Mark
5(b)(i)	н	Ignore other structures	(1)
	H C H H O H H H C C C C C H H H H H H	Allow non-displayed formula	

Question Number	Acceptable Answers	Additional Guidance	Mark
5(b)(ii)	• 2-methylpentan-3-ol	Allow 2-methyl-3-pentanol	(1)
		No TE on incorrect formula from 5(b)(i)	

Question Number	Acceptable Answers		Additional Guidance	Mark
5(c)	 ✓ next to nucleophile 	(1)	If more than two boxes ticked scores (0)	(2)
	• \checkmark next to reducing agent	(1)		

5(d) • propane / C ₃ H ₈ Accept name or formula or structural / skeletal / displayed formula (1) / skeletal / displayed formula Ignore additional inorganic products Do not award just `alkane' If name and formula given then they both must be correct	Question Number	Acceptable Answers	Additional Guidance	Mark
	5(d)	• propane / C ₃ H ₈	Accept name or formula or structural / skeletal / displayed formula Ignore additional inorganic products Do not award just 'alkane' If name and formula given then they both must be correct	(1)

(Total for Question 5 = 6 marks)

Question Number		Acceptable Answers	Additional Guidance	Mark
6(a)	•	23.15 and 23.55 and 23.20 completed in table (1)	All three titres must be shown to 2 D.P.	(2)
	•	✓ beneath titres 1 and 3 and mean titre = 23.18 (cm^3) (1)	Allow 23.2 or 23.175 (cm ³)	

Question Number	Acceptable Answers	Additional Guidance	Mark
6(b)	(From)(pale) pink/purple (to) colourless	Both colours needed for the mark Do not award mauve or magenta or violet for pink/purple	(1)
		Ignore references to `clear'	

Question Number	Acceptable Answers	Additional Guidance	
6(c)	• calculation of moles of MnO_4^- in 25.0 cm ³ (1)	Example of calculation Moles $MnO_4^- = \frac{0.02(00) \times 25.0}{1000}$ $= 5(.00) \times 10^{-4} / 0.0005(00)$ (mol)	(5)
	 calculation of moles of NO₂⁻ in mean titre (1) 	Moles NO_2^- = 2.5 x moles MnO_4^- in mean titre = 1.25 x 10 ⁻³ / 0.00125 (mol)	
	 calculation of moles of NO₂⁻ in 250 cm³ (1) 	Moles NO ₂ ⁻ in 250 cm ³ = moles NO ₂ ⁻ in mean titre x $\frac{250}{250}$ = 1.25 x 10 ⁻³ x $\frac{250}{23.18}$ = 0.013481449 = 0.0135 (mol) Allow TE on mean titre from (a) Ignore SF except 1 SF	
	• calculation of molar mass (1)	• Molar mass = $2 \times \frac{1.15}{0.0135}$ = 170.3703704 (g mol ⁻¹) = 170.4 (g mol ⁻¹)	

 calculation of <i>x</i> correctly to the nearest whole number: (1) 	Allow TE • $\mathbf{x} = \frac{170.4 - 116.3}{18(.0)}$	
	x = 3.005555556	
	 x = 3 (must be to nearest whole number) Allow TE from molar mass calculated Allow alternative correct methods for MP4 and MP5 Correct value of x with no working scores (1) 	

Question Number	Acceptable Answers	Additional Guidance	Mark
6(d)	$2MnO_4^- + 5NO_2^- + 6H^+ \rightarrow 2Mn^{2+} + 5NO_3^- + 3H_2O$	Each of the following equations score (1) mark overall:	(2)
	 evidence of multiplying 1st equation by 2 and 2nd equation by 5 (1) 	$2MnO_4^- + 5NO_2^- + 16H^+ + 5H_2O$	
) $\rightarrow 2Mn^{2+} + 5NO_3^- + 8H_2O + 10H^+$	
	 overall equation correct with H⁺ and H₂O and e⁽⁻⁾ cancelled as appropriate 	OR	
) $2MnO_4^- + 5NO_2^- + 6H^+ + 5H_2O$ $\rightarrow 2Mn^{2+} + 5NO_2^- + 8H_2O$	
		OR	
		$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	
		Ignore state symbols, even if incorrect	
		Allow multiples	

Question Number	Acceptable Answers	Additional Guidance	Mark
6(e)	An explanation that makes reference to the following:		(2)
	Either		
	• the (calculated) value of x would be too high (1)	Allow `amount' or `mass' for `moles'	
	- The moles of MgCO $_3$ would be too low / the moles of		
	$Mg(NO_2)_2 \cdot \mathbf{x}H_2O$ would be too low / the M_r of		
	$Mg(NO_2)_2 \bullet \boldsymbol{x} H_2O \text{ would be too high} $ (1)	MP2 depends on MP1	
	Or		
	 (So) the (calculated) value of <i>x</i> would be unchanged (so this does not explain the discrepancy) (1) 		
	 Only a small amount/mass of MgCO₃ would dissolve because it is very slightly soluble (1) 	MP2 depends on MP1	

Question Number	Acceptable Answers	Additional Guidance	Mark
6(f)	 An answer that makes reference to the following points: the MgCO₃ would decompose / the residue would contain NaNO₂ / the residue would contain (the excess) Na₂CO₃ 	Ignore references to just 'impurities'	(2)
	 (so) the (proposed) method is not valid / appropriate / suitable (1) 	M2 dependent on M1	

Question Number	Acceptable Answers	Additional Guidance	Mark
6(g)	An answer that makes reference to the following point:		(1)
	 heat (the sample) to constant mass 	Allow repetition of heating and weighing until there is no change in mass (of the sample)	
		Ignore references to 'brown gas' etc	

Question Number	Acceptable Answers	Additional Guidance	Mark
6(h)	An answer that makes reference to the following points:		(2)
	• use a larger mass (of the hydrated salt) (1)	Ignore references to repeat measurements	
	 Use a balance that weighs to 3 D.P. (rather than 2 D.P.) (1) 	Allow statements such as 'use a balance that weighs to more decimal places' /'greater resolution' / ` a more precise/sensitive balance' Do not allow `more accurate'	

(Total for Question 6 = 17 marks)

Question Number		Acceptab	le Answers	Additional Guidance	Mark
*7(a)	This question and logically s sustained reas Marks are awa answer is stru The following for indicative marking points seen in answer 6 5–4 3–2 1 0 The following for structure a	Acceptor assesses a stude structured answer soning. Arded for indicative ctured and show table shows how content. Number of marks awarded for indicative marking points 4 3 2 1 0 table shows how and lines of reaso	the marks should be awarded oning.	Guidance on how the mark scheme should be applied: The mark for indicative content should be added to the mark for lines of reasoning. For example, an answer with five indicative marking points that is partially structured with some linkages and lines of reasoning scores 4 marks (3 marks for indicative content and 1 mark for partial structure and some linkages and lines of reasoning). If there are no linkages between points, the same five indicative marking points would yield an overall score of 3 marks (3 marks for indicative content and no marks for linkages). In general it would be expected that 5 or 6 indicative points would score 2 reasoning marks, and 3 or 4 indicative points would score 1 reasoning mark. A total of 2, 1 or 0 indicative points would score 0 marks for reasoning. Reasoning marks may be subtracted for extra incorrect chemistry.	(6)

	Number of marks awarded for structure of answer and sustained line of	
	reasoning	
Answer shows a coherent and logical structure with linkages and fully sustained lines of reasoning demonstrated throughout.	2	
Answer is partially structured with some linkages and lines of reasoning.	1	
Answer has no linkages between points and is unstructured.	0	

India IP1: •	cative content (IPs) (transition metal) forms an ion with an incomplete <i>d</i> sub-shell	Allow 'partially-filled' for incomplete Allow d-orbital(s) Do not award "d-shell" Allow "D" for "d" throughout
IP2:	scandium and zinc are not transition metals	Allow if only Sc and Zn are used to illustrate <i>d</i> -block elements that are not transition metals
IP3:	Sc^{3+} and $1s^2 2s^2 2p^6 3s^2 3p^6$	Allow 4s ^o and/or 3d ^o Penalise use of [Ar] once only
IP4:		
•	Zn^{2+} and $1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10}$	
IP5:		Allow "Sc ³⁺ has no d sub-shell"
•	Sc^{3+} and d sub-shell empty / d-orbitals empty	
IP6:		Allow 'd orbital is full' if clarified by 3d ¹⁰
•	Zn ²⁺ and d sub-shell full / ALL d-orbitals are full	

Question Number	Acceptable Answers	Additional Guidance	Mark
7(b)	 calculation of moles of Cr₂O₇²⁻ (1) 	Example of calculation • moles of $Cr_2O_7^{2-} = 0.100 \times 20.0$ 1000 = 2(.00) x 10 ⁻³ (mol)	(5)
	 calculation of moles of Mn²⁺ (1) 	• moles of $Mn^{2+} = \frac{0.200 \times 30.0}{1000}$ = 6(.00) x 10 ⁻³ (mol)	
	• deduction of whole number mole ratio of $Cr_2O_7^{2-}$: Mn^{2+} (1	• mole ratio $Cr_2O_7^{2-}$: Mn^{2+} = 1 : 3	
	- deduction of total number of electrons lost by 3 mol of $$\rm Mn^{2+}$$		
	• deduction of final oxidation state of manganese (1	 3 mol Mn²⁺ lose a total of 6e⁻ each Mn²⁺ loses 2e⁻, so final oxidation state of Mn is (+)4 / IV /Mn⁴⁺ MP3 and MP4 may be awarded via alternative methods e.g. use of oxidation numbers / moles of electrons correct final oxidation state with no working scores M5 only 	

Question Number	Acceptable Answers	Additional Guidance	Mark
7(c)	 calculation of moles of Cr (1) 	Example of calculation Moles Cr = $\frac{1.456}{52(.0)}$ = 0.028(0)	(4)
	MP2, 3 & 4 are only available for answers using a 3:2 mole ratio		
	 deduction of mole ratio of X to Cr³⁺ (1) 	3 mol X : 2 mol Cr ³⁺ / Cr	
		Allow $2Cr^{3+} + 3X \rightarrow 3X^{2+} + 2Cr$	
	 calculation of moles of X (1) 	Moles $\mathbf{X} = 0.028(0) \times 1.5$ = 0.042(0) Correctly multiplying by 1.5 for MP3 implies	
	 calculation of molar mass / A_r of X and identification of X accordingly 	MP2 $M_r = \frac{1.021}{0.042(0)}$ $= 24.3 \text{ (a mol^{-1})}$	
	(-)	and (so) X is magnesium/Mg COMMENT: If transpose 3:2 ratio, X has $M_r = 54.7$ (g mol ⁻¹) and X = Mn so scores M1, then M3 and M4 by TE	
		(i.e. (3) marks overall)	

(Total for Question 7 = 15 marks)

Question Number	Acceptable Answers		Additional Guidance	Mark
8(a)	 first two curly arrows and lone pair shown on the nitrogen 	(1)	Ignore correct dipoles Allow non-displayed NH ₃ ⁺ for MP2 Ignore involvement of Cl ⁻ / NH ₃ or wrong inorganic products for MP3	(3)
	 structure of intermediate including positive charge 	(1)	EITHER H H I I	
	 third curly arrow and formation of final organic product 	(1)	$CH_{3}CH_{2} \longrightarrow CH_{3}CH_{2} \longrightarrow CH_{$	
			$\begin{array}{c} H & H & H \\ CH_{3}CH_{2} - C - H & \longrightarrow CH_{3}CH_{2} - C - N & (+H^{+}) \\ H - H & H & H \end{array}$	
			H H	
			Ignore depiction of transition state e.g. レー・フ	
			H CH ₂ CH ₃ H NCCl	

 OR fission of C-Cl bond curly arrow and curly arrow from nitrogen in NH₃ with lone pair shown on N atom to correct carbocation structure of resulting nitrogen-containing intermediate including positive charge curly arrow resulting in breaking of an N-H bond and structure of the final organic product 	1) 1) 1)	OR AWARD $S_N 1$ mechanism $CH_3CH_2 \longrightarrow CH_3CH_2 \longrightarrow CH_3CH_2 \longrightarrow CH_3CH_2 \longrightarrow CH_3CH_2 \longrightarrow CH_3CH_2 \longrightarrow H$ $H \longrightarrow H^+ H^+ H^- H^- H^- H^- H^- H^- H^- H^- H^- H^-$	
		$CH_{3}CH_{2} - C - H \longrightarrow CH_{3}CH_{2} - C - N (+H^{+})$ $H - H - H - H - H - H - H - H - H - H -$	

Question Number		Acceptable Answers	Additional Guidance	Mark
8(b)	•	first two curly arrows and lone pair shown on the nitrogen (1)	CH_3CH_2 \longrightarrow CH_3CH_2 CH_3C	(3)
	•	structure of intermediate including both charges (1)	$H \xrightarrow{+} H \xrightarrow{+} H$ $H \xrightarrow{-} H$ $H \xrightarrow{-} H$	
	•	three curly arrows and structure of final organic product (1)	$CH_{3}CH_{2} \longrightarrow CH_{3}CH_{2} \longrightarrow CH_{$	
			С Н (+ HCl)	

⁽Total for Question 8 = 6 marks)

Question Number	Acceptable Answers	Additional Guidance	Mark
9(a)(i)	$(K_{c} =) [HI(g)]^{2}$	Ignore missing state symbols or units	(1)
	[H ₂ (g)][I ₂ (g)]	Do not award round brackets	

Question Number	Acceptable Answers	Additional Guidance	Mark
9(a)(ii)	$(K_c =) \frac{4y^2}{(a - y)^2}$	Allow square brackets	(2)
	Numerator term correct (1)	Allow (2y) ²	
	Denominator term correct (1)	Allow (a² – 2ay+y²) or (a-y)(a-y)	

Question Number	Acceptable Answers	Additional Guidance	Mark
9(b)(i)	 both values correct to 2 DP 	1.13	(1)
		2.93	

Question Number	Acceptable Answers	Additional Guidance	Mark
9(b)(ii)	All 7 points plotted correctly (1)	Allow TE for incorrect values from 9(b)(i)	(2)
	 Appropriate straight line of best fit, drawn through the origin (1) 	Do not allow all points above or below the line of best fit Allow line of best fit to intersect one square either side of the origin	

Question Number	Acceptable Answers		Additional Guidance	Mark
9(b)(iv)	• $\frac{\sqrt{K_c}}{2 + \sqrt{K_c}}$ = gradient / $\frac{y}{a}$ • re-arrangement of expression and calculation of K_c	(1)	Example of calculation $\frac{\sqrt{K_c}}{2 + \sqrt{K_c}} = 0.76$	(2)
		(1)	K _c = 40.1 /40 (no units)	
			Allow TE on gradient from part (b)(iii) $K_c = [(2 \text{ x grad})/(1\text{-grad})]^2$	
			Correct answer with no working scores (2)	

Question Number	Acceptable Answers	Additional Guidance	Mark
9(c)	 hydrogen is flammable / explosive 	Allow iodine vapour damages eyes /toxic	(1)
		Allow hydrogen iodide is corrosive / acidic / irritant (if qualified) / lachrymator	
		Ignore references to high pressure	
		Ignore references to safety precautions	

Question Number	Acceptable Answers		Additional Guidance	Mark
9(d)	 Faster rate of reaction / increased rate K unchanged 	(1)	Ignore references to shifting position of equilibrium	(2)
		(1)		

Question Number	Acceptable Answers		Additional Guidance	Mark
9(e)(i)	An explanation that makes reference to the followin	g points:		(2)
	• (K _c is) smaller / decreases / gets less	(1)		
	 (forward) reaction is exothermic 	(1)	Allow reverse/backwards reaction is endothermic	
			MP2 dependent on MP1	

Question Number	Acceptable Answers	Additional Guidance	Mark
9(e)(ii)	 straight line drawn on the graph with a less steep gradient (and goes through the origin) 	Do not allow if lines cross	(1)

(Total for Question 9 = 16 marks)

TOTAL FOR PAPER = 120 MARKS

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481 Email <u>publication.orders@edexcel.com</u>

Order Code For more information on Edexcel qualifications, please visit our website www.edexcel.com

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom

