

Please write clearly in bl	ock capitals.		
Centre number		Candidate number	
Surname			
Forename(s)			·
Candidate signature			

AS BIOLOGY

Paper 1

Thursday 25 May 2017

Afternoon

Time allowed: 1 hour 30 minutes

Materials

For this paper you must have:

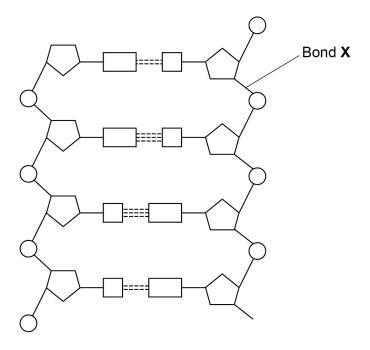
- a ruler with millimetre measurements
- a scientific calculator, which you are expected to use where appropriate.

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- All working must be shown.
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 75.


ner's Use
Mark

Answer all questions in the spaces provided.

0 1 Figure 1 shows part of a DNA molecule.

Figure 1

0 1 . 1 How many nucleotides are shown in Figure 1?

[1 mark]

0 1 . 2 Name the type of bond labelled X in Figure 1.

[1 mark]

0 1.3	The enzymes DNA helicase and DNA polymerase are involved in DNA replication.	
	Describe the function of each of these enzymes.	2 marks]
	DNA helicase	
	DNA polymerase	
0 1 . 4	Adenosine triphosphate (ATP) is a nucleotide derivative.	
	Contrast the structures of ATP and a nucleotide found in DNA to give two differences.	o 2 marks]
	1	
	2	

0 2	A student investigated the effect of three types of disinfectant on the growth of Lactobacillus bacteria.
	During the investigation, the student:
	 boiled the agar before pouring the agar plates transferred 0.5 cm³ of a diluted liquid culture of <i>Lactobacillus</i> onto each agar plate left some agar plates as controls added to other agar plates different concentrations of the disinfectants as shown in Table 1 on page 5.
	After 2 days, she counted the number of colonies of bacteria on each agar plate.
0 2 . 1	Explain the purpose of: [2 marks]
	boiling the agar
	transferring the same volume of liquid culture onto each agar plate.

The three disinfectants used by the student were Lysol, propan-2-ol and ammonia.

Table 1 shows the student's results.

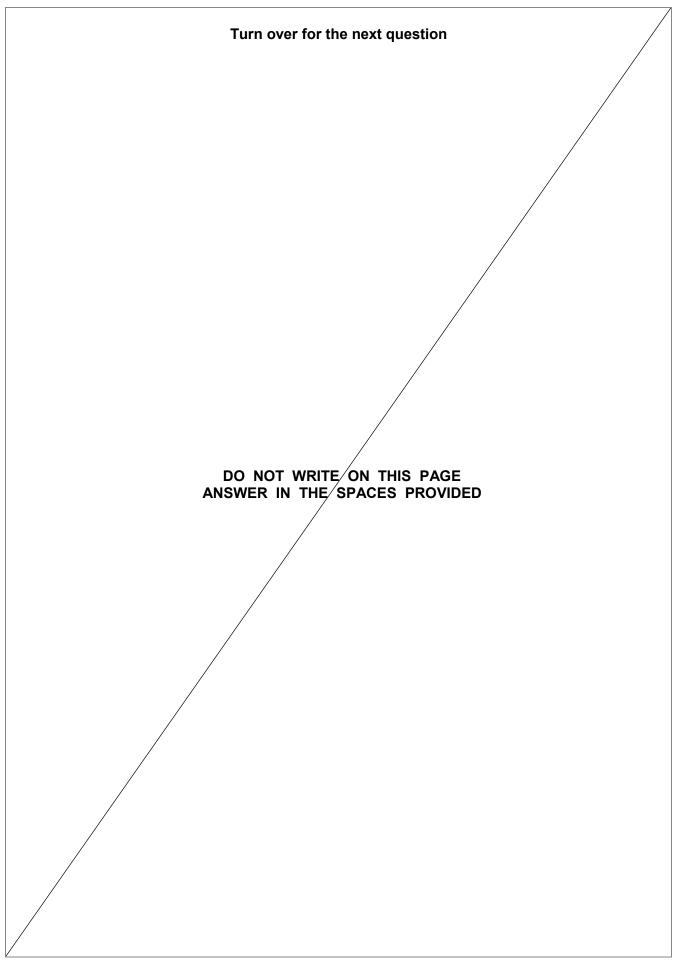
Table 1

Concentration of	Number of colonies of bacteria			
disinfectant / arbitrary units	Lysol	Propan-2-ol	Ammonia	
0	300	300	300	
5	0	290	300	
10	0	195	295	
15	0	0	275	
20	0	0	240	

0	2		2	The liquid culture the student transferred was	diluted by 1	in 10	000 (10-4).
---	---	--	---	--	--------------	-------	-------------

Use information in this question to calculate how many bacteria were present in $1\ \text{cm}^3$ of undiluted liquid culture.

[2 marks]


_		
Answer =		

Question 2 continues on the next page

0 2 . 3	The student concluded that the minimum concentration of propan-2-ol needed t stop the growth of <i>Lactobacillus</i> was 15 units. This conclusion is incorrect.
	Describe how you could obtain a more accurate estimate of the minimum concentration of propan-2-ol needed to stop the growth of this species of
	bacterium. [2 mark

0 3 Figure 2 outlines the digestion and absorption of lipids. Figure 2 Lipid droplets Lumen of small intestine Fatty acids and glycerol Micelles Intestinal epithelial cell Triglycerides in vesicle Chylomicron containing protein Lymph capillary Tick (\checkmark) the box by the name of the process by which fatty acids and glycerol 3 . 1 enter the intestinal epithelial cell. [1 mark] Active transport Diffusion Endocytosis Osmosis

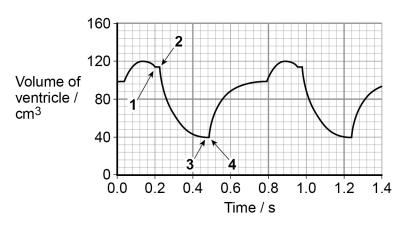

[Extra space]	
	_
Name structure Q in Figure 2 and suggest how it lipids.	is involved in the absorption of [4 marks]
Name	
How it is involved	
[Extra space]	

Figure 3 shows the volume changes in the left ventricle of a human heart during two cardiac cycles. The numbers **1**, **2**, **3** and **4** represent times when heart valves open or close.

Figure 3

0 4 . 1

Use information from **Figure 3** to complete **Table 2**. Place the number **1**, **2**, **3** or **4** in the appropriate box.

[2 marks]

Table 2

	Valve opens	Valve closes
Semi-lunar valve		
Atrioventricular valve		

Use **Figure 3** to calculate the volume of blood pumped per minute by the left ventricle.

[2 marks]

Answer =	cm ³ min ⁻

0 4.3	Explain the role of the heart in the formation of tissue fluid. [2 marks]
0 4 . 4	Lymphoedema is a swelling in the legs which may be caused by a blockage in the lymphatic system.
	Suggest how a blockage in the lymphatic system could cause lymphoedema. [1 mark]

Turn over for the next question

Scientists measured the mean amino acid concentration in white wines made from grapes grown organically and white wines made from grapes that were not grown organically.

0 5 . 1

Which test could the scientists have used to identify that there are amino acids in white wine?

[1 mark]

0 5 . 2

All amino acids have the same general structure. **Figure 4** shows the structure of the amino acid isoleucine.

Draw a box around the part of the molecule that would be the same in all amino acids.

[1 mark]

Figure 4

$$\begin{array}{c} \mathsf{CH_3} \\ \mathsf{CH_2} \\ \mathsf{H_3C} - \mathsf{C} - \mathsf{H} \\ \mathsf{H_2N} - \mathsf{C} - \mathsf{COOH} \\ \mathsf{H} \end{array}$$

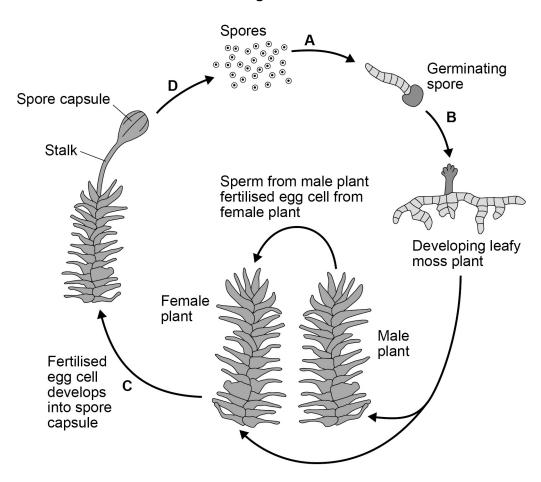
Isoleucine

0 5 . 3

Name the chemical element found in all amino acids that is **not** found in triglycerides.

[1 mark]

0 5 . 4	The scientists used a statistical test to determine whether there was a significant difference in the amino acid concentration in the two types of white wine. They obtained a value for P of 0.04.
	Name the statistical test the scientists used and give a reason for your answer.
	Was the difference significant? Give a reason for your answer. [3 marks]
	Name of statistical test
	Reason for choice
	Explanation of test result


Turn over for the next question

6

Figure 5 shows the life cycle of a moss plant. In this life cycle, **only** the stalk and spore capsule are **diploid**. All the cells in all the other stages of the life cycle of the moss are **haploid**.

Figure 5

Which letter, **A**, **B**, **C** or **D**, in **Figure 5**, shows where meiosis occurs in the life cycle of the moss? Write the appropriate letter in the box provided.

[1 mark]

0 6.2	Explain how the chromosome number is halved during meiosis.	[2 marks]
	Figure 6 shows a cell from the moss plant.	
	The cell is in the second meiotic division.	
	Figure 6	
0 6 . 3	What is the haploid number of chromosomes for this species of moss?	[4 montal
		[1 mark]
	Question 6 continues on the next page	

6 . 4	Crossing over greatly increases genetic diversity in this species of moss	5.
	Describe the process of crossing over and explain how it increases gendiversity.	etic
		[4 marks]
	[Extra space]	

0 7 . 1	Describe how you would use cell fractionation techniques to obtain a sample of chloroplasts from leaf tissue. Do not include in your answer information about			
	any solutions.			[3 marks]
0 7 . 2	Table 3 shows features of a mit	tochondrion and a	chloroplast Comr	olete Table 3
<u> </u>	with ticks where a feature is pre		cinoropiast. Comp	
		T.11. A		[3 marks]
		Table 3		1
	Feature	Mitochondrion	Chloroplast	
	Double outer membrane			
	Starch grains			

Diffusion of oxygen into the organelle

0 7.3	Give the function of a mitochondrion.	[1 mark]
0 7.4	size of mitochondria in skeletal muscle. large number of volunteers before and	after the exercise programme. From each of these to determine the mean number of the each of inner mitochondrial membranes.
	Figure 7	Figure 8
	Mean 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Mean area of inner mitochondrial membranes / μm² Before After training training
	What do the data in Figure 7 and Figure exercise programme on mitochondria?	

0 8 . 1	Give three properties of water that are important in biology.	[3 marks]
	1	
	2	
	3	

A student investigated the effect of different concentrations of sucrose solution on "chips" cut from a potato. Each chip had the same dimensions.

The student:

- weighed each chip at the start
- placed each chip in a separate test tube, each containing 10 cm³ of sucrose solution at a different concentration
- left the chips in the sucrose solution for 24 hours
- dried the surface of the chips and then weighed them again.

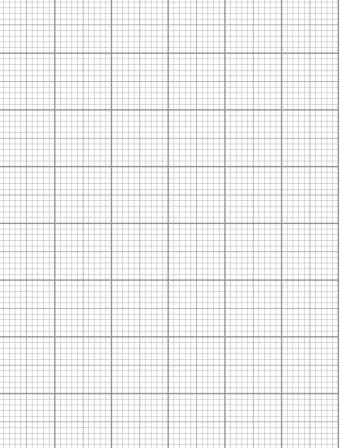
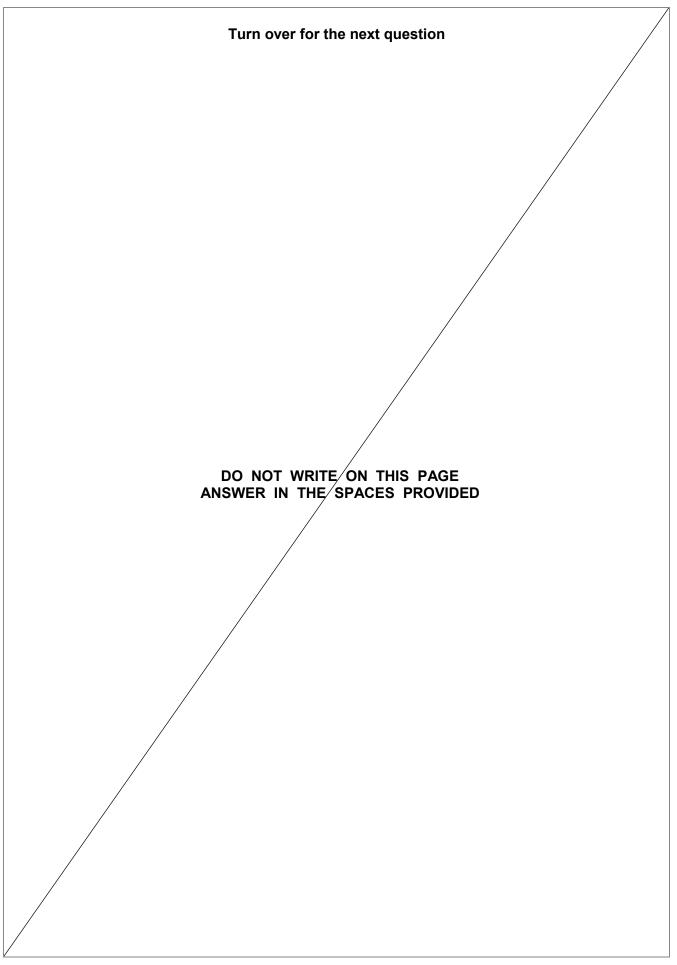

Table 4 shows the student's results.

Table 4

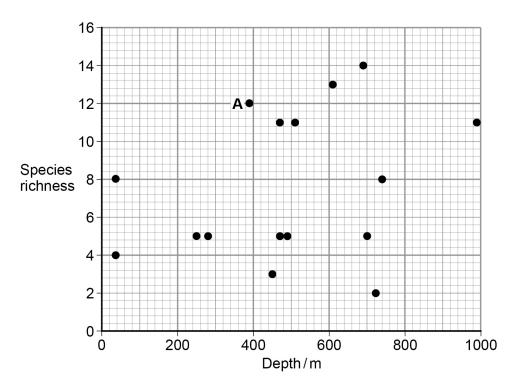
Concentration of sucrose solution / mol dm ⁻³	Initial mass of chip / g	Final mass of chip / g	Ratio of final mass to initial mass of chips
0.0	2.79	3.82	
0.2	2.75	2.97	
0.4	2.78	2.67	
0.6	2.69	2.31	
0.8	2.72	2.20	
1.0	2.77	1.99	

0 8.2	The student produced the sucrose solutions with different concentrations from a concentrated sucrose solution.
	Name the method she would have used to produce these sucrose solutions. [1 mark]
	Name of method
0 8.3	Calculate the ratio of final mass to initial mass of potato chips and plot a suitable graph of your processed data. Express the ratios in Table 4 as a single number (for example 5.26:1 would be expressed as 5.26). [3 marks]


Question 8 continues on the next page

0 8 . 4	Explain the result for the chip in 0.8 mol dm ⁻³ sucrose solution.	[2 marks]	
			L

IB/M/Jun17/7401/1



0 9 . 1	Define each of the following terms.	[2 marks]
	Species	
	Species richness	

Scientists investigated the species richness of fish caught at various depths in the Pacific Ocean close to the western coast of Chile.

Figure 9 shows the scientists' results. 68% of all the fish caught in this investigation came from sample **A**.

Figure 9

0 9 . 2 What is the modal value of species richness? [1 mark]

0 9 . 3	68% of all the fish caught in this investigation came from sample $\bf A$. A student thought this showed that sample $\bf A$ had a greater index of diversity than any of the other samples.
	It is not possible to draw this conclusion from the given data. Give reasons why. [3 marks]

Turn over for the next question

1 0	Read the following passage.
	Azidothymidine (AZT) is a drug used to treat people infected with human immunodeficiency virus (HIV). It inhibits the enzyme that synthesises DNA from HIV RNA. This does not destroy HIV in the body but stops or slows the development of AIDS.
	In the past, some people who took AZT on its own eventually developed AIDS. Some of the HIV in their bodies had become resistant to AZT. To prevent this from happening, people infected with HIV are now treated with highly active antiretroviral therapy (HAART). This involves taking AZT with other anti-HIV drugs at the same time.
	AZT is taken in low doses. This is because people who took high doses over long periods of time suffered muscle wastage. It was found that high doses of AZT inhibit replication of mitochondria.
	Use information from the passage and your own knowledge to answer the questions.
1 0 . 1	Suggest and explain why AZT does not destroy HIV in the body but stops or slows the development of AIDS (lines 3–4). [4 marks]
	[··········
	-
	-
	[Extra space]

1 0.2	Suggest and explain two advantages of using HAART (lines 7–9).	[4 marks]
	Advantage 1	
	-	
	Advantage 2	
	Question 10 continues on the next page	

1 0 . 3	Suggest why high doses of AZT lead to muscle wastage (lines 10–11).	[2 marks]

END OF QUESTIONS

Copyright Information

For confidentiality purposes, from the November 2015 examination series, acknowledgements of third party copyright material will be published in a separate booklet rather than including them on the examination paper or support materials. This booklet is published after each examination series and is available for free download from www.aqa.org.uk after the live examination series.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team, AQA, Stag Hill House, Guildford, GU2 7XJ.

Copyright © 2017 AQA and its licensors. All rights reserved.

