A-level

Physics
PHYA5/2A - Astrophysics
Mark scheme

2450
June 2016

Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

[^0]| Question | Answers | Additional Comments/Guidance | Mark | ID details |
| :---: | :---: | :---: | :---: | :---: |
| 1 (a) | Use of $M=f o / f e$
 To give $5=\mathrm{fo} / 0.15 \checkmark$
 And fo $=0.75 \mathrm{~m}$
 Use of length $=\mathrm{fo}+\mathrm{fe} \checkmark$
 To give length $=0.75+0.15=0.9(0)(\mathrm{m}) \checkmark$ | The first mark is for substitution into the magnification equation. If $\mathrm{M}=50$ used allow $\max 2$.
 If fo and fe are reversed, allow max 1.
 The second mark is for using the sum of the focal lengths.
 If fo-fe used allow max 1.
 The third mark is for the final answer.
 Allow c.e. for the second and third marks. | 3 | |
| 1 (b) (i) | real | Allow "not virtual"
 Allow "can be captured on a screen" or similar | 1 | |
| 1 (b) (ii) | Use of $1 / f=1 / u+1 / v$
 To give $1 / 0.15=1 / u+1 / 0.6 \checkmark$
 And therefore $u=0.2(0) \mathrm{m} \checkmark$ | There is no c.e. for using a negative value of image distance or focal length If fo used for fe allow max 1 If 0.9 m used for fe, give $0 / 2$
 If correct answer seen without substitution, give $2 / 2$.
 Condone use of u for image distance and v for object distance. | 2 | |
| 1 (b) (iii) | Ray diagram:
 One construction ray correct, | If telescope seen, only first mark can be awarded. | 3 | |

	Second construction ray correct to give magnified inverted image. Image, object and focal point labelled. \checkmark	For fat lens, construction ray must pass through principal axis within the lens. If magnifying glass seen, only $1^{\text {st }}$ and $3^{\text {rd }}$ marks can be awarded. Allow F or labelled focal length. Focal point must be on the side of the lens where the ray cuts the principal axis. Labelled lines for image and object - may be dotted.		
1 (c)	Chromatic aberration		1	
Total			10	
Question	Answers	Additional Comments/Guidance	Mark	ID details
2 (a) (i)	Spectral class axis correct: OBAFGKM \checkmark	Ignore bunching of labels. Do not condone letters beyond O and M	1	
2 (a) (ii)	Main sequence correct \checkmark Dwarf and giant stars correct \checkmark	Bands not lines. Main sequence must have correct curvature LHS must be above -5 and RHS below 10 on abs mag scale. Dwarfs in bottom left quadrant, below abs mag 5 , not touch Main sequence.	2	

| 2 (b) (i) | Marks awarded for this answer will be determined by the Quality of Written Communication (QwC) as well as the standard of
 the scientific response. Examiners should apply a 'best-fit' approach to the marking. The candidate's writing should be legible
 and the spelling, punctuation and grammar should be sufficiently accurate for the meaning to be clear. The candidates answer
 should be assessed holistically. The answer will be assigned to one of 3 levels according to the following general criteria: | | |
| :--- | :--- | :--- | :--- | :--- |
| | Low level (1 or $\mathbf{2}$ marks) | Intermediate Level (3 or $\mathbf{4}$ marks) | Higher Level (5 or $\mathbf{6}$ marks) |

| | | The third mark is for the final answer; allow
 0.46 to $0.5 ;$ no sf penalty | |
| :---: | :--- | :--- | :--- | :--- |
| 2 (b) (iii) | 41 Arietis has the largest radius and temperature, \checkmark
 and therefore the greatest power output/ brightest abs
 mag/greatest intrinsic brightness (ref to $\left.P=\sigma A T^{4}\right) \checkmark$
 But appears dimmest in the sky (as it has the greatest
 apparent magnitude.) so 41 Arietis must be furthest away. \checkmark | The first two marks can be awarded for a
 correct calculation of the power of 41 Arietis. | Allow area for radius |
| Total | | | |

Question	Answers	Additional Comments/Guidance	Mark	ID details
3 (a)	A silicon chip \checkmark (divided into)picture elements	Condone silicone, but not silicon(e) dioxide etc. Ignore references to wiring or process Allow pixels for picture elements	2	
3 (b)	The image formed on the CCD is created by incident photons. These photons cause electrons to be released. The electrons are trapped in ("potential wells" in the CCD) The number of electrons liberated (in each pixel) is proportional to the intensity of the light/number of photons falling (on each pixel). or so that the pattern of the charge built up is related to the image. \checkmark	The first mark is for identifying the role of photons in forming the charge build up. Condone excited/promoted Do not condone ejected/emitted/escaped. References to the photoelectric effect loses the first mark. The second is for describing how the charge /no of electrons is stored/built up The third is for stating the relationship between the number of electrons/charge and the image pattern.	3	
Total			5	

Question	Answers	Additional Comments/Guidance	Mark	ID details
4 (a)	The quasar is a bright radio source. \checkmark	Allow strong/intense/powerful for bright. Ignore reference to pulses Other incorrect properties, eg red shift, loses the mark.	1	
4 (b) (i)	Using I $=I_{0} / d^{2}$ with some evidence of substitution \checkmark $\begin{aligned} & \mathrm{P}_{\mathrm{q}}=4 \times 10^{11} \mathrm{P}_{\mathrm{s}} \\ & \mathrm{I}_{\mathrm{s}}=1.4 \times 10^{17} \mathrm{I}_{\mathrm{q}} \text { at Earth } \\ & \mathrm{P}_{\mathrm{s}} / 1^{2}=1.4 \times 10^{17}\left(4 \times 10^{11} \mathrm{P}_{\mathrm{s}} / \mathrm{d}^{2}\right)^{\checkmark} \\ & \mathrm{d}^{2}=4 \times 10^{11} \times 1.4 \times 10^{17} \\ & =5.6 \times 10^{28} \\ & \mathrm{~d}=2.4 \times 10^{14} \mathrm{AU} \checkmark \end{aligned}$	The first mark is for some evidence of using the inverse square law. Do not condone equation the wrong way up. The second is for an attempt to compare the two stars using the inverse square law. The third is for the final answer.	3	
4 (b) (ii)	Dark energy	Evidence of hedging bets eg dark energy/dark matter etc. loses the mark	1	
Total			5	

[^0]: Copyright © 2016 AQA and its licensors. All rights reserved.
 AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

