A-level Chemistry (7405/3)

Paper 3

Specimen 2015 v0.5

Session

2 hours

Materials

For this paper you must have:

- the Data Booklet, provided as an insert
- a ruler
- a calculator.

Instructions

- Answer **all** questions.
- Show all your working.

Information

• The maximum mark for this paper is 90.

Please write clearly, in block capitals, to allow character computer recognition.								
Centre number	Centre number							
Surname								
Forename(s)								
Candidate signature								

	Section A
	Answer all questions in this section.
1	Ethanol can be oxidised by acidified potassium dichromate(VI) to ethanoic acid in a two-step process.
	ethanol \longrightarrow ethanal \longrightarrow ethanoic acid
01.1	In order to ensure that the oxidation to ethanoic acid is complete, the reaction is carried out under reflux.
	Describe what happens when a reaction mixture is refluxed and why it is necessary, in this case, for complete oxidation to ethanoic acid.
	[3 marks]
01.2	Write a half-equation for the overall oxidation of ethanol into ethanoic acid. [1 mark]

Typesetter code

The Tabl	boiling points of the o e 1 .	rganic compound	s in a reaction mix	xture are shown ir)			
		Tab	le 1					
Compound ethanol ethanal ethanoic acid								
	Boiling point / °C	78	21	118				
of th woul	these data to describe ese three compounds d use and how you we aratus can be either a	. Include in your a ould minimise the	answer a descript loss of ethanal.	ion of the apparat Your description c ketch.	us you			
	Que	estion 1 continue	es on the next pa	age				

01.4	Use your knowledge of structure and bonding to explain why it is possible to separate ethanal in this way. [2 marks]
01.5	A student obtained a sample of a liquid using the apparatus in Question 1.3 .
	Describe how the student could use chemical tests to confirm that the liquid contained ethanal and did not contain ethanoic acid. [5 marks]

Barcode

	A stude	ent obtained the titrati	on results g	iven in Tab l	e 2.		
			Table 2				
			<u>г</u>		I	I	I
			Rough	1	2	3	
	Final bur	ette reading / cm ³	4.60	8.65	12.85	16.80	
	Initial bur	rette reading / cm ³	0.10	4.65	8.65	12.85	
	Titre / cm	3					
02.	2 Comple	ete Table 2.					[1 mark]
·							
02.	3 Calcula	te the mean titre and	justify your	choice of ti	tres.		[2 marks]
	Calcula	tion					
				Mean titre) =		cm ³
	Justifica	tion					
02.	4 The pH	ranges of three indic	ators are sh	iown in Tab	le 3.		
			Tat	ole 3			
		Indicator		pH range)		
		Bromocresol green		3.8–5.4			
		Bromothymol blue		6.0–7.6			
Thymol blue 8.0–9.6							
Select from Table 3 a suitable indicator for the titration of ethanoic acid with							
sodium hydroxide.							I
							[1 mark]

02.5	The uncertainty in the mean titre for this experiment is ± 0.15 cm ³ .
	Calculate the percentage uncertainty in this mean titre. [1 mark]
	Percentage uncertainty = %
02.6	Suggest how, using the same mass of ethanoic acid, the experiment could be improved to reduce the percentage uncertainty.
	[2 marks]
	Turn over for the next question

3	A peptide is hydrolysed to form a solution containing a mixture of amino acids. This mixture is then analysed by silica gel thin-layer chromatography (TLC) using a toxic solvent. The individual amino acids are identified from their R_f values.
	Part of the practical procedure is given below.
	 Wearing plastic gloves to hold a TLC plate, draw a pencil line 1.5 cm from the bottom of the plate. Use a capillary tube to apply a very small drop of the solution of amino acids to the mid-point of the pencil line. Allow the spot to dry completely. In the developing tank, add the developing solvent to a depth of not more than 1 cm. Place your TLC plate in the developing tank. Allow the developing solvent to rise up the plate to the top. Remove the plate and quickly mark the position of the solvent front with a
	pencil.8. Allow the plate to dry in a fume cupboard.
03.1	Parts of the procedure are in bold text.
	For each of these parts, consider whether it is essential and justify your answer. [4 marks]

Typesetter code

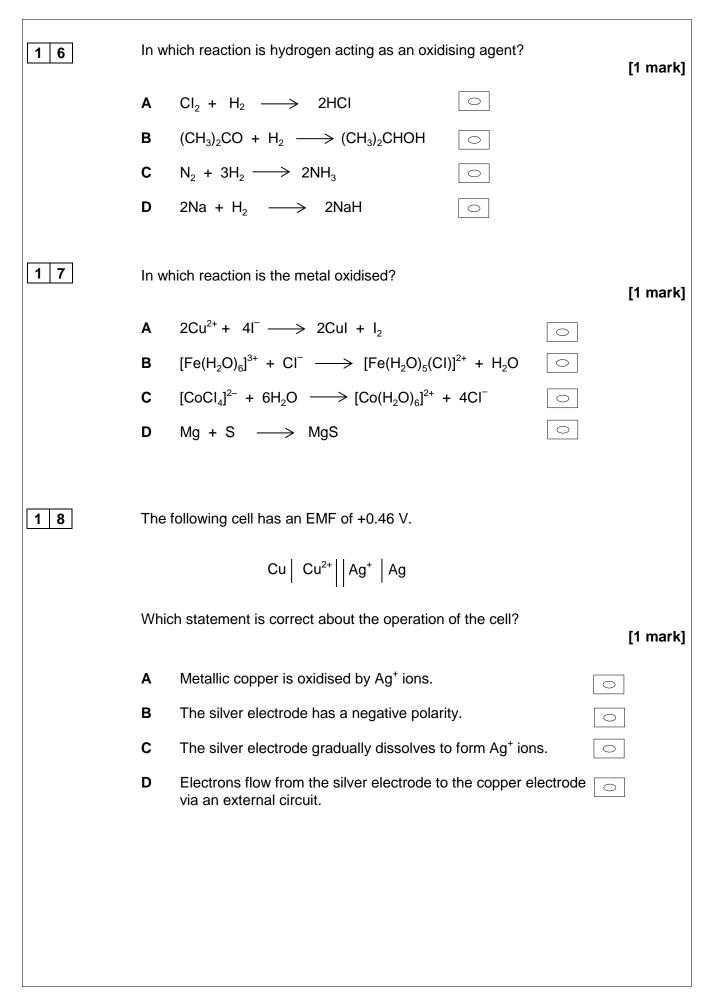
03.2	Outline the steps needed to locate the positions of the amino acids on the T and to determine their R_f values.	LC plate [4 marks]
03.3	Explain why different amino acids have different R_f values.	[2 marks]

4 Ethanedioic acid is a weak acid. Ethanedioic acid acts, initially, as a monoprotic acid. •он 📛 ⊔^ Ο •0⁻ + H⁺ НO 04.1 Use the concept of electronegativity to justify why the acid strengths of ethanedioic acid and ethanoic acid are different. [6 marks]

0 4 . 2 A buffer solution is made by adding 6.00×10^{-2} mol of sodium hydroxide to a solution containing 1.00×10^{-1} mol of ethanedioic acid (H₂C₂O₄). Assume that the sodium hydroxide reacts as shown in the following equation and that in this buffer solution, the ethanedioic acid behaves as a monoprotic acid. $H_2C_2O_4(aq) + OH^{-}(aq) \longrightarrow HC_2O_4^{-}(aq) + H_2O(l)$ The dissociation constant K_a for ethanedioic acid is 5.89 × 10⁻² mol dm⁻³. Calculate a value for the pH of the buffer solution. Give your answer to the appropriate number of significant figures. [5 marks] pH = _____ Question 4 continues on the next page

04.3	In a titration, the end point was reached when 25.0 cm ³ of an acidified solutio containing ethanedioic acid reacted with 20.20 cm ³ of 2.00×10^{-2} mol dm ⁻³ potassium manganate(VII) solution.	n					
	Deduce an equation for the reaction that occurs and use it to calculate the concentration of the ethanedioic acid solution.						
		[4 marks]					
	Equation						
	Calculation						
	Original concentration =	mol dm ⁻³					

5	A sample of ethanedioic acid was treated with an excess of an unknown alcohol in the presence of a strong acid catalyst. The products of the reaction were separated and analysed in a time of flight (TOF) mass spectrometer. Two peaks were observed at $m/z = 104$ and 118.
05.1	Identify the species responsible for the two peaks. [2 marks]
05.2	Outline how the TOF mass spectrometer is able to separate these two species to give two peaks. [4 marks]

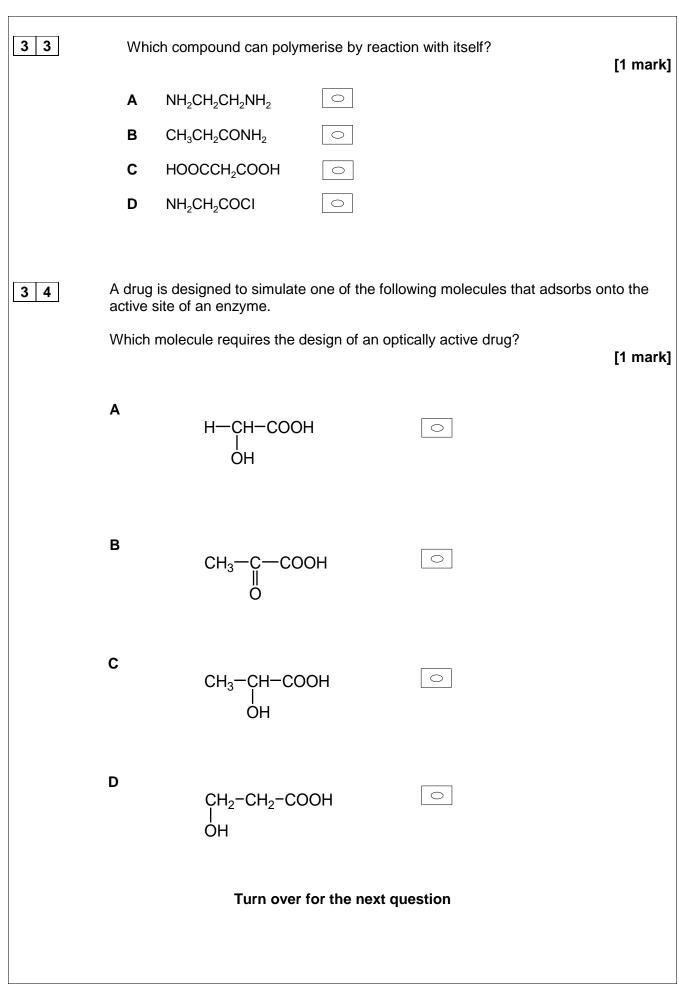

	Section B								
			Answe	er all questions	s in thi	is sectior	า.		
Only one a	nswer p	er questio	n is allo	wed.					
For each ar	nswer co	ompletely f	fill in the	e circle alongsi	de the	e appropi	riate answer.		
CORRECT METH		WRONG	METHODS	\$ • \$	Ø				
If you want	to chan	ge your ar	iswer ye	ou must cross	out yo	our origin	al answer as	s shown. 🔰	\triangleleft
If you wish as shown.	to return	n to an ans	swer pre	eviously crosse	ed out,	ring the	answer you	now wish to	o select
06	Which	change re	quires	the largest am	ount c	of energy	?		[1 mark]
	Α	He⁺(g)	\rightarrow	He ²⁺ (g) + e ⁻		0			
	В	Li(g)	\rightarrow	Li ⁺ (g) + e ⁻		\bigcirc			
	С	Mg ⁺ (g)	\longrightarrow	Mg ²⁺ (g) + e ⁻		0			
	D	N(g)	\rightarrow	N ⁺ (g) + e ⁻		0			
0 7	A sam	ple of 2.18	3 g of o	xygen gas has	a volu	ime of 18	870 cm³ at a	pressure of	f 101 kPa.
				of the gas? 8.31 J K ⁻¹ mol	-1				
	The ga	as constan		0.31 J K IIU	•				[1 mark]
	Α	167 K		0					
	В	334 K		0					
	С	668 K		0					
	D	334 000	K	0					

08	An ester is hydrolysed as shown by the following equation.	
	$RCOOR' + H_2O \longrightarrow RCOOH + R'OH$	
	What is the percentage yield of RCOOH when 0.50 g of RCOOH ($M_r = 100$) obtained from 1.0 g of RCOOR [/] ($M_r = 150$)?) is [1 mark]
	A 33% 🔿	
	B 50%	
	C 67%	
	D 75%	
09	A saturated aqueous solution of magnesium hydroxide contains 1.17×10^{-3} g (Mg(OH) ₂ in 100 cm ³ of solution. In this solution, the magnesium hydroxide is f dissociated into ions. What is the concentration of Mg ²⁺ (aq) ions in this solution?	of ully
		[1 mark]
	A $2.82 \times 10^{-2} \text{ mol dm}^{-3}$	
	B 2.01 × 10 ⁻³ mol dm ⁻³	
	C $2.82 \times 10^{-3} \text{ mol dm}^{-3}$	
	D $2.01 \times 10^{-4} \text{ mol dm}^{-3}$	
	Turn over for the next question	

1 0	The	rate equation for the	e hydrogenation of ethene			
		$C_2H_4(g) + H_2(g) \longrightarrow C_2H_6(g)$				
	is $Rate = k[C_2H_4][H_2]$					
	At a fixed temperature, the reaction mixture is compressed to triple the original pressure.					
	Wł	at is the factor by wh	ich the rate of reaction chang	jes? [1 mark]		
	Α	6				
	в	9 💿				
	С	12 💿				
	D	27 💿				
1 1			onia is heated to a given tem wing equilibrium is establishe	perature, 50% of the compound		
	$NH_3(g) \implies \frac{1}{2}N_2(g) + \frac{3}{2}H_2(g)$					
	What is the total number of moles of gas present in this equilibrium mixture? [1 mark]					
	Α	1.5 🔍				
	в	2.0 💿				
	С	2.5 💿				
	D	3.0 💿				
1 2	Wh	ch change would alte	er the value of the equilibrium	constant (K_p) for this reaction?		
	$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$					
				[1 mark]		
	Α	Increasing the total p	pressure of the system.			
	В	Increasing the conce	entration of sulfur trioxide.			
	С	-	entration of sulfur dioxide.			
	D	Increasing the tempe	erature.	0		

Typesetter code

1 3	What is the pH of a 0.020 mol dm ⁻³ solution of a diprotic acid which is completely [1 mark] A 1.00 B 1.40 O C 1.70 O D 4.00			
1 4	The acid dissociation constant, $K_{\rm a}$, of a weak acid HA has the value 2.56 × 10 ⁻⁴ mol dm ⁻³			
	What is the pH of a 4.25 × 10^{-3} mol dm ⁻³ solution of HA? [1 mark]			
	A 5.96 \bigcirc			
	B 3.59 \bigcirc			
	C 2.98 \bigcirc			
	D 2.37 💿			
1 5	Magnesium reacts with hydrochloric acid according to the following equation.			
	$Mg + 2HCI \longrightarrow MgCI_2 + H_2$			
	A student calculated the minimum volume of 2.56 mol dm ^{-3} hydrochloric acid required to react with an excess of magnesium to form 5.46 g of magnesium chloride ($M_r = 95.3$).			
	Which of the following uses the correct standard form and the appropriate number of significant figures to give the correct result of the calculation?			
	[1 mark]			
	A $4.476 \times 10^{-2} \text{dm}^3$			
	B $4.48 \times 10^{-2} \text{ dm}^3$			
	C $4.50 \times 10^{-2} \text{ dm}^3$			
	D $44.8 \times 10^{-3} \text{ dm}^3$			



A Barium Image: Calcium	excess
The gas constant is $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$. Which is X? A Barium B Calcium C Magnesium D Strontium O V hat forms when a solution of sodium carbonate is added to a solution of gallium(III) nitrate?	
A Barium Image: Calcium	۲.
B Calcium C Magnesium D Strontium Strontium Image: Compare the second secon	mark]
C Magnesium D Strontium What forms when a solution of sodium carbonate is added to a solution of gallium(III) nitrate?	
D Strontium What forms when a solution of sodium carbonate is added to a solution of gallium(III) nitrate?	
2 0 What forms when a solution of sodium carbonate is added to a solution of gallium(III) nitrate?	
gallium(III) nitrate?	
gallium(III) nitrate?	
[1	mark]
A A white precipitate of gallium(III) carbonate.	
B A white precipitate of gallium(III) hydroxide.	
C A white precipitate of gallium(III) carbonate and bubbles of carbon dioxide.	
D A white precipitate of gallium(III) hydroxide and obubbles of carbon dioxide.	
2 1 Which compound gives a colourless solution when an excess of dilute aqueou ammonia is added? [1] A MgCl ₂ \bigcirc B AgCl \bigcirc C CuCl ₂ \bigcirc D AlCl ₃ \bigcirc	us mark]

2 2	What	t is the final species produced when an excess of aqueous ammonia is	sadded
		ueous aluminium chloride?	[1 mark]
	А	[AI(NH ₃) ₆] ³⁺	
	в	[AI(OH) ₃ (H ₂ O) ₃]	
	с	$[AI(OH)_4(H_2O)_2]$	
	D	[AI(OH)(H ₂ O) ₅] ²⁺	
2 3		following equation represents the oxidation of vanadium(IV) ions by ganate(VII) ions in acid solution.	
		$5V^{4+}$ + MnO ₄ ⁻ + $8H^+$ \longrightarrow $5V^{5+}$ + Mn ²⁺ + $4H_2O$	
		t volume of 0.020 mol dm ⁻³ KMnO₄ solution is required to oxidise comp ion containing 0.010 mol of vanadium(IV) ions?	oletely a
	Solut		[1 mark]
	Α	10 cm ³	
	В	25 cm ³	
	С	50 cm ³	
	D	100 cm ³	
2 4	How	many isomers have the molecular formula C_5H_{12} ?	[1 mark]
	Α	2 💿	
	в	3 💿	
	с	4 💿	
	D	5 0	

2 5	Which molecule is not produced when ethane reacts with bromine in the presence of ultraviolet light?			
	of uit	raviolet light?	[1 mark]	
	Α	$C_2H_4Br_2$		
	в	HBr O		
	С	H ₂		
	D	C ₄ H ₁₀		
2 6	How	many structural isomers have the molecular formula C_4H_9Br ?		
			[1 mark]	
	Α	2		
	В	3 💿		
	С	4 💿		
	D	5 •		
2 7	What	t is the major product of the reaction between but-1-ene and DBr?		
	(D IS	deuterium and represents ² H)	[1 mark]	
	Α	$CH_2DCH_2CH_2CH_2Br$		
	в	CH ₂ DCH ₂ CHBrCH ₃		
	С	CH ₃ CH ₂ CHBrCH ₂ D		
	D	CH ₃ CH ₂ CHDCH ₂ Br		
28	Why	are fluoroalkanes unreactive?	[1 mark]	
	Α	Fluorine is highly electronegative.		
	в	The F⁻ion is very stable.		
	С	They are polar molecules.		
	D	The C–F bond is very strong.		

29	Whic	h alcohol could not be produced by the reduction of an aldehyde or a	ketone? [1 mark]
	Α	2-methylbutan-1-ol	
	В	2-methylbutan-2-ol	
	С	3-methylbutan-1-ol	
	D	3-methylbutan-2-ol	
30	Whic	h compound forms optically active compounds on reduction?	[1 mark]
	Α	CH ₃ CH ₂ C(CH ₃)=CHCH ₃	
	в	$CH_3CH_2C(CH_3)=CH_2$	
	С	CH ₃ COCH ₃	
	D	CH ₃ CH ₂ COCH ₃	
3 1	How A B C	many secondary amines have the molecular formula C ₄ H ₁₁ N? 2 0 3 0 4 0	[1 mark]
	D	5 💿	
32	Whic A B C D	compound has the highest boiling point? C_2H_4 C_2H_6 C_2H_6 CH_3NH_2 CH_3F	[1 mark]

3 5	W	hich amine has only	three peaks in its proton NMR spectrum?	[1 mark]
	Α	Methylamine	0	
	В	Trimethylamine	0	
	С	Diethylamine	0	
	D	Propylamine	0	
			END OF QUESTIONS	

Copyright © 2014 AQA and its licensors. All rights reserved.